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Discrete Symmetries as Automorphisms
of the Proper Poincaré Group
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We present a consistent approach to finding discrete transformations in representation
spaces of the proper Poineagfoup. To this end we establish a correspondence between
involutory automorphisms of the group and the discrete transformations. Such a cor-
respondence allows us to describe the action of discrete transformations on arbitrary
spin-tensor fields without any use of relativistic wave equations. Extending the proper
Poincag group by the discrete transformations, we construct explicitly fields carrying
corresponding irreps.
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1. INTRODUCTION

Itis well known that Lorentz transformations in Minkowski space are divided
into continuous and discrete ones. Transformations that can be obtained continu-
ously from the identity form the proper Poineagfoup. A classification of irre-
ducible representations (irreps) of the Poirogirdup was given by Wigner (1939)
(see also Barut and Raczka, 1977; Kim and Noz, 1986; Mackey, 1968; Ohnuki,
1988; Tung, 1985). In fact, the representation theory of the proper Peigoaup
provides us only by continuous transformations in representation spaces. At the
same time, a regular way to describe discrete transformations in such spaces on
the ground of purely group-theoretical considerations does not exist. Moreover,
it turns out that there is no one-to-one correspondence between tte, 3ot df
discrete transformations in Minkowski space and a set of discrete transformations
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in representation spaces. The latter set is wider than the former one (it includes
P, T,C, Ty).®

As a rule, finding discrete transformations in the representation spaces de-
mands an analysis of corresponding wave equations, and has, in a sense, heuris-
tic character. Besides, the possibility to have different wave equations (and with
different symmetries) for particles with the same spin results in a certain “fuzzi-
ness” of the definition of discrete transformations in the representation spaces
(see, e.g., Benn and Tucker, 1981; Lee and Wick, 1966). All that stresses the
lack of a regular approach to the definition of such discrete transformations and,
therefore, creates an uncertainty for using discrete transformations as symme-
tries. More detailed consideration have led Lee and Wick (1966) to the conclusion
that “the situation is clearly an unsatisfactory one from a fundamental point of
view.”

Attempts to define discrete transformations in representation spaces without
appealing to any relativistic wave equations or model assumptions have a long
history. In particular, some features of discrete transformations were studied on
the base of their commutation relations with generators of the Pairgranip
(Lee and Wick, 1966; Shirokov, 1958, 1960; Wigner, 1964). One ought to mention
also the identification of discrete transformations with (anti)automorphisms of
the algebra of observables (Bogolyubeival, 1990) and the consideration of an
action of discrete transformations in terms of the operators of second quantization
(see, e.g., Peskin and Schroeder, 1995; Weinberg, 1995). These approaches allow
one to avoid straightforward definition of discrete transformations as symmetry
ones of relativistic wave equations, but in any case one uses properties of the Dirac
equation solutions to cancel the residuary ambiguity. Thus, the problem of an
explicit construction of discrete transformations in representation spaces remains
still open.

In the present work, we offer the consistent approach to constructing discrete
transformations. This approach is completely based on the representation theory
of the proper Poincargroup. Our consideration contains two key points.

First, we introduce a scalar field on the proper Poiaagmdup. This field
carries representations with all possible spins and depends on coordinattes
Minkowski space and coordinate®n the Lorentz group. The latter coordinates
describe spinning degrees of freedom. Some of discrete transformations affect
only space-time coordinatesand some of them affect only spin coordinates
Using the scalar field we get a possibility to describe “nongeometrical” trans-
formations (ones that leave space-time coordinatemchanged, in particular,
the charge conjugation) on an equal footing with reflections in Minkowski space.

5There are three different transformations related to the change of the sign of time: time reflection
considered in detail by Gel'faret al.(1963), Wigner time reversaly (Wigner, 1932), and Schwinger
time reversallsch (Schwinger, 1951; Umezaw al, 1954).
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Expanding the scalar field in powerszfve obtain conventional spin-tensor fields
as corresponding coefficient functions.

Second, we identify discrete transformations with involutory automorphisms
of the proper Poincargroup.

It is known that there are two types of the automorphisms. An inner auto-
morphism of a grougs can be presented in the forgn— gogggl, wheregy € G.

All other automorphisms are called outer ones. The outer automorphisms of the
proper Poincargroup can't be reduced to continuous transformations of the group,
they correspond to reflections of coordinate axes or to dilatations. A connection
between some discrete transformations and outer automorphisms was mentioned
by Gelfand et al. (1963), Gitman and Shelepin (2001), Kuo (1971), Michel
(1964), and Silagadze (1992). In particular, study by Kuo (1971) contains an idea
that outer automorphisms of internal-symmetry groups may correspond to discrete
(possibly broken) symmetries. In this context, one ought to point out the work of
Gel'fandet al. (1963), where an outer automorphism of the Lorentz group was
considered as a starting point to define space reflection.

Studying involutory (both outer and inner) automorphisms of the proper
Poincag group, we describe all discrete transformations and present their action
on arbitrary spin-tensor fields without appealing to any relativistic wave equations.

One has to mention a discussion in the literature about the sign of the mass
term in relativistic wave equations for half-integer spins (see, e.g., Ahluwalia,
1996; Barut and Ziino, 1993; Brana and Ljolje, 1980; Dvoeglazov, 1996; Markov,
1964). We apply our approach to present a solution for such a problem.

The paper is organized as follows.

In Section 2 we show that outer involutory automorphisms of the Paincar”
group are generated by reflections in Minkowski space. Thus, we establish
one-to-one correspondence between such automorphisms and reflections.

In Section 3 we introduce the scalar field on the proper Poingestip and
derive transformations of the field under outer and inner automorphisms. As a
consequence we find the action of all the discrete transformations (including space
and time reflections, charge conjugation, and time reversal) on such a field.

In Section 4, decomposing the scalar field in poweis wfe obtain the action
of discrete transformations on conventional spin-tensor fields.

In Section 5 we derive transformations for generators of the Pargradip
and for some other operators under the automorphisms. That allows us to study in
detail all the discrete transformations. In particular, we discuss a relation between
Wigner and Schwinger time reversals.

In Section 6 we extend the Poineagtroup by the discrete transformations
and describe characteristics of irreps of the extended group.

In Section 7-9 we construct explicitly massive and massless fields with differ-
ent characteristics corresponding to the discrete transformations. We establish a re-
lation between our approach and conventional theory of relativistic wave equations.
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Finally we classify solutions of relativistic wave equations for arbitrary spins with
respect to representations of the extended Painganip.

2. REFLECTIONS IN MINKOWSKI SPACE AND OUTER
AUTOMORPHISMS OF THE PROPER POINCAR E GROUP

Here we are going to demonstrate how discrete transformations in Minkowski
space can generate some outer involutory automorphisms of the proper Boincar”
group. Recall that Poincargroup transformations

X" = A", x" + a*, (2.1)

in Minkowski space %, = diag(1,—-1,-1,—-1),x = (x*, » =0, 1, 2, 3)) are
defined by pairsd, A), wherea = (a*) is an arbitrary vector and the matrix
A € O(3, 1). They obey the composition law

(@2, A2)(aq, A1) = (a2 + Azay, A2Ag). (2.2)

Any matrix A can be presented in one of the four formss, AsAg, AtAo,
AsAiAg. Here Ag € SOy(3, 1), whereSOy(3, 1) is a connected component of
SQ(3, 1), and matrices s = diag(1,—1, -1, —1), A; = diag(-1, 1, 1, 1) corre-
spond to space reflectidd and time reflectio. ThenPT = Iy, = AgA¢. Pairs
(a, Ag) with the composition law (2.2) form the grody(3, 1), which is a semidi-
rect product of the translation grodg4) and the grouf® Oy(3, 1).

Acting by As on the equalityc’ = ApX + a, we obtain

AsX' = AsAoAZ AsX + Asa, of X = AgX+ 2,

where

X=Ax=(x° —x¥), a=Aa=("-a"), A= AsAoA = (Ag)fl.
In a similar manner, using the operatiohs@ndly, we obtain finally thaP, T, I
generate three outer involutory automorphism#/g(3, 1),

P:(a Ao) > (& (A5));
T:(a Ao) = (—a (A) 7)) (2.3)
Ix : (&, Ao) > (—a, Ag).
Notice thatP andT generate the same automorphism of the gr@p(3, 1).
Consider now a groupi(3, 1), which is an universal covering group for
Mo(3, 1). M(3, 1) is the semidirect product df(4) andSL(2, C) and will be
called further the proper Poin@group. (The extension of the proper Poircar”

group by the space reflection will be called below the improper Poéngamip.)
It is known that there is one-to-one correspondence between any vedtora
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Minkowski space and Z 2 Hermitian matricesV (see, e.g., Barut and Raczka,
1977; Buchbinder and Kuzenko, 1995; Streater and Wightman, 1964):

1 _
vV =vhg,, V= éTr(VGM)' (2.5)

Proper Poincar transformationg’ = Agx + a can be rewritten in new terms as
X' =UXUT + A, (2.6)

whereX = x*o,, A= a"o,,andU e SL(2, C) (two different matricestU cor-
respond to one matrix ). Elements ofM (3, 1) are given by pairsA, U) with
the composition law

(A2, U2)(Aq, Uy) = (U2A1U2T + Az, UoUy). (2.7)
Space reflection takes= (x°, x¥) into X = (x°, —x¥), or in terms ofX = x*0,,
P:X— X =X'o, =x'q,.
Using the relatiorX = o,XT o, and the identity,Uo, = (UT) ™, we obtain
X =@UhIxut+A (2.8)

as a consequence of (2.6). Thus,is transformed by means of the element
(A, (UT)™) of M(3, 1). The relation

P:(AU)—> (A UH (2.9)

defines an outer involutory automorphismM§(3, 1). In a similar manner, we
obtain automorphisms df1 (3, 1) that are generated Gy Iy,

T:(AU) > (=A UH™D; (2.10)
Iy i (A, U) > (—A,U). (2.11)

The automorphisms that correspond?@ndT exhaust all the outer involu-
tory automorphisms of the proper Poinegroup in the following sense. Any outer
involutory automorphism can be presented as a composition of these two automor-
phisms and an inner automorphism of the group particular, the automorphism

6We use two sets of 2 2 matricess,, = (o0, ok) anda,, = (00, —0k),

ao=<g') 2), 01=<2 é). az=(? _(i)>, 03=<é _]0_> (2.4)

"The Poincae’groupM(3, 1) is a semidirect product of the Lorentz gro8jh(2, C) and the group
of four-dimensional translation§(4). Any outer automorphism dsL(2, C) is a product of invo-
lutory automorphismJ — (U1)~1 and of an inner automorphism (Gel'fared al, 1963). Outer
automorphisms of the translation group are generated by the dilatatiors cx*, ¢ # 0, 1, and are
involutory only atc = —1. Outer automorphisms &L(2, C) andT (4) generate the following outer
automorphisms of the Poin@agroup: @, U) — (A, (UT)™1), (A, U) — (cA U).
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of complex conjugation
C: (A U)— (A U). (2.12)
is the product of the outer automorphism (2.9) and the inner automorphism
(0,i02)(A, (U)™H(0, ~io2) = (A, ). (2.13)

One can see from (2.9) and (2.10) tiaand T generate the same automor-
phisms of SL(2, C), namely,U — (UT)~, whereasP T generates the identity
automorphism ofSL(2, C) and an outer automorphist — — A of the transla-
tion group.

Thus, the discrete transformations in Minkowski space generate outer involu-
tory automorphisms of the proper Poinegroup? In the next section we will see
how these automorphisms are related to discrete transformations in representation
spaces of the group.

3. AUTOMORPHISMS AND DISCRETE TRANSFORMATIONS
IN REPRESENTATION SPACES

The main object of our study here is a scalar field on the proper Peincar’
group (Gitman and Shelepin, in press). That field is in fact a generating function
for all irreps of the group. First we recall briefly main points of the corresponding
technique. Itis well known (Barut and Raczka, 1977; Vilenkin, 1968; Zhelobenko
and Schtern, 1983) that any irrep of a gr@gifis contained (up to the equivalence)
in a decomposition of a generalized regular representation. Consider the left gen-
eralized regular representatidpn(g), which is defined in the space of functions
f(h), h € G on the group as

TL(@)f(h)y= f'(h) = f(g™*h), geG. (3.1)
As a consequence of the relation (3.1), we can write
f'(h)y= f(h), h"=gh. (3.2)

Let G be the groupgM(3, 1) and we use the parametrization by twa 2 matri-

ces (one Hermitian and another one fr&h(2, C)), which was described in the
previous section. At the same time, using such a parametrization, we choose the
following notations:

g< (AU), h< (X 2), (3.3)

8The reflectionsP, T can be considered also in terms of fundamental automorphisms of Clifford
algebras (Varlamov, Preprint math-ph/0009026).
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where A, X are 2x 2 Hermitian matrices and, Z € SL(2, C). The maph «
(X, Z) creates the correspondence

ho(X,22, x=x), z=(z), z2=(2,)

(3.4)
nw=0,1,23 =12, 212,—-2z2, =1
by virtue of the relations
Z1 Z
X =xto,, Z= < ! —1> € SL(2,C). (3.5)
Z 7

On the other hand, we have the correspondénee (X', Z, Z),
h =gh< (X,Z)=(A U)X, Z)=(UXU"+ A UZ) < (X,7Z,2),
x"o, = X' =UXU" + A= x" = (Ag)* X" +a", Ag<« U e SL(2,C),

(3.6)
z, Z
< , _/1) =72'=UZ=7=U/2, z =U/z,
5L 4
(3.7)
U=(Ur), 7z -27 =1
Then the relation (3.2) takes the form
f'x,Z,Z)= f(x,z2), (3.8)
X* = (Ag)* X" +a*, Ap < U e SL(2,C), (3.9
z,=U2, z,=U2;, 212,-22 =7%7-274=1  (310)

The relations (3.8)—(3.10) admit a remarkable interpretation. We may treat
x andx’ in these relations as position coordinates in Minkowski spd¢8, 1)/
SL(2, C) (in different Lorentz reference frames) related by proper Po@aris-
formations, and setg, z and Z, Z may be treated as spin coordinates in these
Lorentz frames. They are transformed according to Eq. (3.10). Carrying two-
dimensional spinor representation of the Lorentz group, the variatdedz are
invariant under translations as one can expect for spin degrees of freedom. Thus,
we may treat sets, z, zas points in a position-spin space with the transformation
law (3.9) and (3.10) under the change from one Lorentz reference frame to another.
In this case Egs. (3.8)—(3.10) present the transformation law for scalar functions
on the position-spin space.

Onthe other hand, as we have seen, theset ) is in one-to-one correspon-
dence with elements d¥1(3, 1). Thus, the function$(x, z, z) are still functions
on this group. That is why we often call them scalar functions on the group,
remembering that the term “scalar” came from the above interpretation.
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We are reminded that different functions of such type correspond to different
representations of the groiy(3, 1). Thus, the problem of classification of irreps
of this group is reduced to the problem of a classification of the scalar functions on
position-spin space. It is natural to restrict ourselves by scalar functions that are
analytic bothirz, zand inz, Z (or, simply speaking, that are differentiable with re-
spect to these arguments). Further, such functions are denofda i, z, 7, 2) =
f(x,2),z=(z z z, 7). Since matriced) are unimodular, there exist invariant
antisymmetric tensoes? = —ef®, 69 = P 12 = g2 = 1 g1y =515 = —1.
Spinor indices are lowered and raised by the help of these tensors,

Zy = saﬂzﬁ, = s"‘ﬁzﬂ, 74 = ad/'j*z’é, 7% = sé‘B*Zf',.

The continuous transformations (3.10) do not fixandz* (and their com-
plex conjugatez®, z¢). Therefore, scalar functions of the forfr(x, z), f(x, 2),

f(x, z), f(x, z) form four invariant (with respect t(3, 1) transformations)
subspaces.

As was demonstrated by Gitman and Shelepin (in press), a standard spin
description in terms of multicomponent functions arises under the separation of
space and spin variables in the scalar functions. Below we recall how it works.

Sincez is invariant under translations, any functigfz) carries a represen-
tation of the Lorentz group. Let a functidin(h) = f (X, z) can be presented in the
form

f(x,2) = ¢"(2DYn(x), (3.11)
where¢"(z) form a basis in the representation space of the Lorentz group. Thus,

we can decompose the functiopyz') of transformed argument = gz in terms
of the functionsp"(z),

¢"(2) = ¢'(2LI"(V). (3.12)
Then the action of the Poin@group on a liné(z) = (¢"(2)) is reduced to a mul-
tiplication by a matrix (U), whereU € SL(2, C): ¢(Z) = ¢(z2)L(U). Comparing
decompositions of a functiofY (x’, Z) = f (X, z) interms of the transformed basis
¢(Z) and in terms of the initial basig(z),

f'(X', 2) = ¢p(2)¥'(X) = (L)Y (X) = ¢ ¥ (),
wherey (x) is a column with componenig,(x), we obtain

¥'(x) = LU Yy (). (3.13)

This is the transformation law for tensor fields on Minkowski space. This law can
be treated as a representation of the Pomgaoup acting in a linear space of
tensor fields as follow3 (g)y (x) = L(U Yy (A~1(x — a)). According to (3.12)
and (3.13), the functiong(z) and vr(x) are transformed under contragradient
representations of the Lorentz group.
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Consider now the action of automorphisms in the space of the scalar functions.
The automorphismg — 1gl ~* (both inner and outer) generate the following left
generalized regular representation transformations of the Peigcaup:

T(9) — ITL(Q) =T (1gl ), (3.14)
f(h) — 1f(h)= f(lh17%). (3.15)

Equation (3.15) defines a corresponding mapping of the space of fundt{bhs
into itself.
Transformations of &, U) and X under the automorphisms that correspond
to space and time reflections are given by Egs. (2.9)—(2.11). Notice that the compo-
sition law of the group is not changed under the automorphisms, therefpe) (
is transformed just asq, U):

P:(X,2Z)— (X, (2™ (3.16)
T:(X,2) = (=X, (ZH™); (3.17)
Iy 0 (X, Z) > (=X, Z). (3.18)

We see that the automorphisms in question correspond to a replacement of argu-
ments of scalar function§(h) according to Egs. (3.16)—(3.18).
The replacement

A A _5. 5
z 25 (zhyt, or N L e (3.19)
zZ 7 ~2, 2

corresponds to space and time reflections. The transformation (3.19) maps func-
tions of % into functions ofz;. Thus, the space of the scalar functions contains
two invariant (with respect to proper Poineagfoup transformations and space-
time reflections) subspaces of functions of the fdr(w, z, ) and f (x, z, z). We
denote these two subspaces\hyandV_ respectively.

The complex conjugatiof affects both the form of scalar functions and
maximal set of coordinates on the Lorentz group,

C:T(g) —» CT(@Ct=T(g), f(h)— Cf(h) = f(h). (3.20)

Therefore, such a transformation takes subspé¢esdV_ into one another. The
transformation (3.20) of the field (h) can be identified (Gitman and Shelepin,

in press) with the charge conjugation, which interchanges particle and antiparticle
fields, see below.

Studying involutory outer automorphisms of the proper Poiagcmoup and
complex conjugation in the space of scalar functions on the group, we have defined
three independent discrete transformations (space refleetibme reflectionT,
and charge conjugatio@) in the representation space of the group. However,
there exist two more independent discrete transformations. Indeed, it is easy to see
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that transformation laws of arguments of functioi$) under Lorentz rotations
and under inner automorphisms are different,

(0,U)(X, Z) = (UXUT, U Z), (3.21)
(0,U)(X, Z)(0,u™ = (UxXxut,uzul). (3.22)

In both cases coordinatesare transformed similarly, thus the action of the inner
automorphisms (3.22) in the space of scalar functibfxg on Minkowski space is
reduced to Lorentz rotations. But for functiohéx, z) of general form, the action
of inner automorphisms is more complicated.

Suppose an inner automorphism (3.22) corresponds to a discrete transforma-
tion, then the conditions)? = €% and det) = 1 take place. Diagonal matrices
with elements'#/2 and matrices of the form

a b ) )
U= , a®+bc=-1, U%2=-1, (3.23)
c —-a

satisfy these conditions. Since the composition of discrete transformations is a
discrete transformation as well, the square of product of two different matrices

of the form (3.23) must be (up to a phase factor) the identity matrix. The latter

requirement reduces (up to a sign) the set of all the matrices (3.23) to the only
three matrices

iO’l, i0'2, i0'3.

The matrixU = io, presents an explicit realization of an inner involutory
automorphism

(X, 2) = (X", (Z")™. (3.24)

(Such a realization was already used above, see (2.13).) The automorphism (3.24)
change signs of two coordinate’ x® and does not changé (that correspond to

the rotation by the angle in Minkowski space). It is more convenient to consider

a composition of the inner automorphism corresponding to the elemeshj éhd

the Lorentz rotation corresponding to the element)0?), namely

(X, Z) > (X, ZU™. (3.25)
Selectingl = ioy, we obtain the transformation (we denote itly,

A A A A
11 (X, Z) = (X, Z(=i02), <z2 ;2)—><;2 _22>. (3.26)

This transformation maps the spaces of functidigs, z, z) and f(x, z, z) into

one another. In contrast to the charge conjugation (3.20), the transformation
replaces arguments only.
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Selectingd = io3 we obtain the transformation
) 2t A —izl izt
I3: (X, Z2) = (X, Z(-io3)), T , R (3.27)
z Z - z

The transformation associated with= i o7 is a product of the transformatiohs
andls.

We see that whereas in Minkowski space there exist only two independent dis-
crete transformations corresponding to outer automorphisms of the Rogroap,
for the scalar field on the group there exist five independent discrete transforma-
tions corresponding to both outer and inner automorphisms. Charge conjugation
is associated with complex conjugation of the scalar functions, and another four
transformations are associated with the following replacements of arguments of
the scalar functions:

X x| 2z, 7 2z
Pl x0 —x|-2, 2 2, -2
Ix [-x° x| z# 2z z¢ g, (3.28)
L | xX° x| z¢ 2z, -z -z
I3 | X0  x |[-iz¥ izg iz¥ —iZ,

4. DISCRETE TRANSFORMATIONS OF SPIN-TENSOR FIELDS

Decomposing the scalar fields in powerszof (z, z, z, z), we obtain all
conventional spin-tensor fields. The latter are coefficient functions in such decom-
positions and depend on coordinaktesn Minkowski space. Thus, we can derive
the action of all the discrete transformations on spin-tensor fields.

There is only one type of spinors in nonrelativistic theory (all spinors are
subjected to the same transformation law under rotations), and there are two types
of spinors (dotted and undotted, which are subjected to different transformation
laws under boosts) in relativistic theory. Underlined and nonunderlirsganors
have different transformation laws under discrete transformations. Thus, taking
into account discrete transformations, we should consider four types of spinors:
dotted and undotted (or left and right) and underlined and nonunderlined (which
allow one to differ particles and antiparticles). In contrast to spin-tensor fields,
for the fields on the Poincargroup the use of different types of indices is not
necessary, because these indices only duplicate the sign of complex conjugation
and sign of underline of the coordinates on the Lorentz group. Below, instead of
using underlined and nonunderlined indices, we stipulate what kind of objects
(particle or antiparticle) is described by the spin-tensor field under consideration.
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As a simple example, we consider first lineazifunctions, they correspond
to spin 1/2 particles. Suppose a particle is described by a fundtionz, z) € V.,

f(X,2,2) = ()2 + ¥ “(X)Z; = ZoW(X), Zp = (Z'Z,),

4.1
( %) ) @4
U(x)=| .. :
¥ *(x)
then an antiparticle is described by a functibfx, z, z) € V_,
1,2, 2) = xa()Z + V()20 = ZpW(X), Zp=(Z2),  (4.2)

whereZp andZ, (and therefore bispino¥(x) in both equations) have the same
transformation law under the proper PoiregroupM (3, 1). Using Egs. (3.16)
and (3.19), we get for space reflection

V(%)
Xa(X)
For the time reflection, we gat®(x) = y°W(—x). The charge conjugation cor-

responds to the complex conjugation in the space of the scalar functions. Thus,
according to (3.20), we write

P:Zp¥(x) > ZpWO(x), WOK) =- ( ) = yoU(X).

Ya(¥)
x (%)
Finally, using Egs. (3.26) and (3.27), we obtain the action of the discrete transfor-
mationsl, andl3,

C:ZpW(X) > ZpW(x) = ZpWO(x), WOX)=— ( ) = iy20 (x).

21 ZpW(X) = Zpy°¥(X),
I3: ZpW(X) = —Zpi ¥(X).

Both transformations, andC interchange particles and antiparticles. The trans-
formation|; is reduced to a multiplication by a phase factor only.

In order to find transformation laws for general spin-tensor fields we need an
explicit form for bases of the Lorentz group irreps. Consider the monomial basis

() (22)°(2,)°
in the space of functions(z, z). The numbersg; = (a + b)/2 andj, = (c + d)/2
are not changed under the action of the Lorentz group generators (Al). Hence the
space of the irrepjf, j2) is the space of homogeneous functions of two pairs of
complex variables of power {2, 2j,). We denote these functions @sj,(2).

For finite-dimensional nonunitary irreps 8fL.(2, C), the numbers, b, ¢, d
are integer nonnegative, therefoieg, j» are integer or half-integer nonnegative.
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Consider polynomialds(x, z) of degree 8 = 2j1 + 2j,in z, 2,
s, z2)= Y > y(x)e"(z, 2). (4.3)
j1tijz=s M1, mp

The functions

(2 ) = NE@)YH @) ) ), (44)

N = (29)![(j1 + m)!(j1 — mo)!(j2 + mp)!(jo — mp)] ~t (4.5)

form a basis of an irrep of the Lorentz group. Such a basis corresponds to a chiral
representation. On the other hand, we can write a decomposition for the same func-
tions in terms of symmetric spin—tensopgl_azjlﬂl--vﬁzjz (x) = lﬂa(l...azmﬂ“"'ﬁzl'z) (x).
Namely,

fS(Xy Z) = Z filiz(xi Z),

j1tia=s
- (4.6)
Firia(Xs 2) = Vo o, " P2 ()2 - 2202 - 2
Comparing the decompositions (4.3) and (4.6), we obtain the relation

jetmz  jo—mp

1 1...12...2
NeY 00 =v 1 15 5% (4.7)

N — ——

jatme ji—m

Consider now the action of the discrete transformations on the funatip®s
According to (3.16) and (3.19), the automorphism that is relatdtlaows us to
write (see (4.3) and (4.4))

f(x,2,2) > f(X, ~2,-2) = p(~2, ~DY(X) = 0(z. 2)YO(X).  (4.8)
It follows from (4.4) that
P2, —2) = (1P 2, 2), (4.9)
therefore we get
w(S)?Ilj'Z“Z()z) = (_1)2(il+jz)w1n21ﬂm()z)_
Finally, we getP transformation of spin-tensor fields
P i by o
Varewag, " 22 (X) = (=170 gy, S 02 (X). (4.10)
The charge conjugatio@ maps functionsf (x, z, ) € V, into functions
f(x,2,2) e V_:

f(X! Z, z) _C) i;(X! Z, 2) = (;J(Z, Z)W*(X) = (p(Zl i)1ﬁ(0)(x) (411)
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Using again (4.4) to write
P2 2) = o2, D) = (FL Mg 7), (412)
we obtain

POMmMz 0y — (—q1)a- m1)+(lz+mz)l/ffj1;271n1( ).

1)z

ThusC transformation of spin-tensor fields has the form

By B C *g ..
Ip()tlmctzj ﬂl ﬂzjz (X) - wﬂl ﬂzjzc‘tl---dzjl (X)
=(- 1)(]1 m1)+(12+m2)w o‘1 - a2jy (X). (4.13)

The action of discrete transformations on funcﬂd‘r(x, 2,7) € V_, which
correspond to antiparticle fields, can be obtained a similar manner. Below we
summarize transformation laws both for scalar fields on the Pa@rgranip and
for spin-tensors fields in Minkowski space in two tables.

Besides of the five independent transformatiéhd, C, I, I3, we include
in these tables two operations related to the change of time sign (Wigner time
reversall,, and Schwinger time reversal.), the inversiorl, (which affects only
space-time coordinated'), and P C T,,-transformation.

Itis easy to see th&@? = P2 = T2 = 1. Operators,, |5 correspond to prod-
ucts of involutory inner automorphisms and the rotation by the an¢gee (3.24)).
Hencel? = 12 = T2 = Ry,, whereRy, is the operator of rotation by=2 The
latter operatlon changes signs of spin variable, z, 2) % f(x, —z, —%) and
corresponds to the multiplication by the phase factat)fU:+12) only.

In the general case the transformation laws for particle and antiparticle spin-
tensor fields are distinguished by signs (for space reflection this fact was pointed
out in the literature, see, for example, Sachs, 1987). This signs play an important
role, because their change leads to noncommutativity of discrete transformations.

There are two different transformatio@sand|,, which interchange particle
and antiparticle fields. The operatby is a spin part ofP C T,-transformation.
Indeed, the relatio® CT,, = I«|, means thaP C T, -transformation is factorized
ininversionly, affecting only space-time coordinates and inl,-transformation,
affecting only spin coordiantes

Consider now scalar fields that are eigenfunction€fdBuch fields describe
neutral particles and obey the conditi@f (h) = f(h) €? f(h). Multiplying
these fields by the phase fac#@?/2, we transform them to real fields obeying
the conditionC f(h) = f(h). The charge conjugatio@ mapsz, z into a com-
plex conjugate pair. Thus, there are two invariant (with respe€)teubspaces
of the scalar functions, namely, spaces of real-valued functiqmsz, z) and
f(x, z, Z). We denote such spaces%zyandvz, respectively. They are mapped into
one another under the space reflectmne V;. Eigenfunctions o€ that are linear
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in z, z (with the eigenvalue 1) have the form

f(x,2,2) = Yu()Z* = ¥ “()2z = Zu¥m(X),
Va(X) )
—¥ex))’

wherewy (x) is a Majorana spinorifM (X) = i y2Wy(x). The space reflection maps
functions fromV; into functions from\V,,

(4.14)
Zu = (%), Wu(x) = (

P:ZuWm(x) = Zy¥(X), Zu(z*Z.),

v = — <ﬁ:((§))> = 05U (X) = i Oy Sy 2l (X).

Therefore, the spaceg, andV, (in contrast to the space#, andV_) do not
contain eigenfunctions d? (i.e., states with definite parity). According to (3.26)
and (3.27), we obtain

Iz ZyW(X) = ZyW(x), (4.16)
l3: ZmW(X) = —Zmiy W (x). (4.17)

Thus, there are four nontrivial independent discrete transformations for the fields
under consideration. These transformations for bispinofs) and Wy (x) are
performed by matrices from the same set. However, one and the same discrete
symmetry operation induces different operations with bispidgps) and Wy (x).

The PCTy-transformation maps the spaces of functioh§&, z, z) and
f(x, z, 2) into themselves. The eigenfunctions BC T,, from these spaces de-
scribe, in particular, “physical” Majorana particles, which are defineg @g,,-
self-conjugate particles with spirf2 (Kayser and Goldhaber, 1983).

(4.15)

5. DISCRETE TRANSFORMATIONS OF OPERATORS

First consider the action of the discrete transformations on generators of the
Poincag group. Such generators in the left generalized regular representation have
the form

P, = —i9/0x", Ju =L +S.., (5.1)

whereL ,, =i(x,d, — x,9,) are orbital momentum operators afg, are spin
operators. The latter operators dependzoand 9/9z, an explicit form of the
operators s presented in the Appendix. The generators (5.1) obey the commutation
relations

[f);u ﬁv] = 01 [‘JMIH ﬁp] = i(n\)p ﬁp, - r)/tp ﬁv)#
(5.2)

(s 3ol = 100pdie — iupdve — 1Mve up + 100 Jup.-
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Fields on the Poincargroup depend on ten independent variables. For the
classification of these fields we can use a maximal set of commuting operators.
As such a set we chose both the left generators (5.1) and generators of the right
generalized regular representatity(g),

Tr(g) (X, 2) = f(xg, zg), xg< X+ ZAZl, zg< ZU. (5.3)

Generators of the right generalized regular representation are labelled by R above.
As a consequence of (5.3) we obtain

ot = -z 1pezht, 3N =8, (5.4)

Operatorsé,w and ésv from (5.1) and (5.4) are the left and right generators
of SL(2,C), they do not depend or. All the right generators (5.4) commute
with all the left generators (5.1) and obey the same commutation relations (5.2).
Below for spin projection operators we use three-dimensional vector notation
& = L6k S’, B« = So. An explicit form of the spin operators is given in the
Appendix by Egs. (A1)—(A3).

According to harmonic analysis theory of Lie groups (Barut and Raczka,
1977; Zhelobenko and Schtern, 1983), a maximal set of commuting operators
includes both Casimir operators and two sets of left and right generators (both sets
in equal number). The total number of the commuting operators is equal to the
number of group parameters. Nonequivalent representations (in a decomposition
of the left GRR) are distinguished by eigenvalues of Casimir operators, equivalent
representations are distinguished by eigenvalues of right generators, and states
within an irrep are distinguished by eigenvalues of left generators.

In the general case, the physical meaning of right generators is not so trans-
parent as of left ones. Nevertheless, right generatd8s8) in the nonrelativistic
rotator theory are interpreted as angular momentum operators in a rotating body-
fixed reference frame (Biedenharn and Louck, 1981; Landau and Lifschitz, 1977;
Wigner, 1959). Since the right transformations commute with the left ones, they
define quantum numbers, which do not depend on the choice of the laboratory
reference frame.

The right generatoré? and é? of the Poincag’group can be used to distin-
guish functions from the subspacés, V_ andV;, V;. Polynomials of power
belonging toV, andV_ are eigenfunctions of the operafb; with eigenvaluesrs
respectively. PoAlxnomiaIs of powes Belonging toV, andV; are eigenfunctions
of the operator B; with eigenvaluesrs respectively.

The explicit form of the generators (see (5.1), (5.4) and (Al), (A2)) allows
us to find their transformation properties under involutory automorphisms, and,
thus, under discrete transformations. The transformafgiscorrespond to outer
automorphisms of the algebra. Therefore, left and right generators are transformed
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similarly underP andT, in particular,
p. — F(-1»p,, S-S B— -B,

where the upper sign correspondsRtoObviously, spatial and boost components
of the total and orbital angular momenta are transformesla@sdB.

The complex conjugatio@ changes signs of all the generators. The corre-
sponding commutation relations are also changed under the complex conjugation;
they follow from (5.2) if to replace therieby —i.

According to (3.25)—(3.27) the transformatiohs I3, which are connected
with inner automorphisms, are defined as right finite transformations of the proper
Poincag group® They do not affect left generators since all the right transforma-
tions commute with all the left ones. Thus, I3 induce automorphisms of the
right generators algebré; changes signs of the first and the third components of
SR andBR, and 15 changes signs of the first and the second componerfg of
andBR.

An intrinsic parity of a massive particle is defined as an eigenvalue of the
operatorP in the rest frameP f (h) = nf (h), n = £1. Since the operatd? com-
mutes withT, C, |, the intrinsic parity is not changed under the corresponding
discrete transformations.

Using information from Tables | and |l and explicit form of the corresponding
operators presented in the Appendix, one can find transformation properties of
physical quantities under discrete transformations. Such properties are listed in
Table IIl. The intrinsic parityy and the sign ofpg label irreps of the improper
Poinca€ group. The latter group includes the proper Poiegmoup and space
reflection. As well as Table Ill includes the left generatpysthe spin parts, B
of the left Lorentz generators, and two right Lorentz generators.

We also include inthe table a current four-vegtpfor the first-order equation
(B2) (the Dirac and Duffin—-Kemmer equations are the particular cases of this
equation fors = 1/2 ands = 1 respectively). In the space of scalar functions
on the group this current is presented by the opeﬂi‘gr,ssee (B3). Particle and
antiparticle fields are distinguished by the sign of the charge, thatis, by the gign of
component of the current. As one can see from the table, the sign of the eigenvalue
SR of right generator can be used to distinguish particles and antiparticles, since this
sign and the sign ofy are transformed similarly under discrete transformations.
As is shown below, the sign of the mass term in the Eq. (B2) is changed as the sign
of the productpo St under discrete transformations, see the next to last column of
Table IIl.

9 Any inner automorphisrh — g~1hgis a product of lefh — g~1h and righth — hg group trans-
formations. In other words, any inner automorphism of the proper Pa@mgratip can be reduced to
a right transformation of this group by means of a corresponding choice of the reference frame. That
gives us one more reason to study the right transformations.
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Table I. Discrete Transformations for Particle Fields

f(X, Z, 2) ¢a1---a2j131.--32j2 (X) "II(X)

(K -2,-2)  (CDP0HRyy g @ (z) OU(X)
HX-2,-2)  (CLP0Hyp ), 20 (%) oW (-X)

I =PT f(—x,z, %) Vayag, P22 (<) W(—x)

C f(x,2,2) PP P24 (X) iy 20 (x)
Ten=CT fX—2,-2) (PR, (R iR ()

I, f(x, 2, —2) (— D294, 0y, P P22 (X) YoU(x)
Tw=1CT f(X2-2 (DR g (-X) ~iy®y%2¥ (%)
PCTy = Ilx f(=%2,-2) (=120, P P22 (—X) yoW(—x)

I3 f(x, —iz, —iz) (—i)z“lﬂﬂmr..azjf 1oz (x) —iw(x)

The last column (L-R) of the table describes the passage between two types
of spinors (leftzg,, 2, andrightz#, z*) labelled by dotted and undotted indices. The
sign— corresponds to a transformation interchanging dotted and undotted indices;
the sign+ corrresponds to a transformation that does not change this indices. Let
we define the chirality as a difference between the number of dotted and undotted
indices, then the last column of the table corresponds to the sign of the chirality. In

Table Il. Discrete Transformations for Antiparticle Fields

f(x,22) oy g, P+ P22 (%) W(x)
f(X,2,2) Vpropap, 1 (X) —yOw(x)
f(x,2,2) Vorepay - oH(=X) 0¥ (—x)

Ix=PT f(=x,22) %1~~a2]lﬂ1'”ﬁziz(—x) W(—X)

c f(x,22) PP s (X) iy2W (x)
Ten=CT (X2 G g (-X) —iyy2 (%)

I, f(x, -z 2) (— 12y, P2 P20 () —y5W(x)

Tw = 1,CT HX2,—2) (PRI g (<0 —iyS%2U ()
PCTw = I,lx f=x=22)  (“1Paa, P2 (=) —yPW(—x)

I3 f(x,iz,iz) 2y gy PP (x) TW(X)
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Table Ill. Discrete Transformation Action on Signs of Physical Quantities

n p p S B K BY j§ j* pF LR
P + + - + - 4+ - 4+ = + -
T + - + + - 4+ - 4+ - - -
Ix=PT + - - 4+ + + + + 4+ - +
c + - - - - - - - = + -
CP + - + - + - + - + + +
Tsch=CT + + - - + - + - 4+ - +
PCT = IxC + + + - - - = = = - -
Iz + + + + + - - - - +
Tw=1.CT + + - +  + i + +
PTw = 121xC + + + - - + + + 4+ + -
PCTw = I2Ix e T + +

aFor the states described by the first-order equation (B2).

the space of scalar functions on the group, the chirality is described by the operator
', see (B5).

The time reflectionm maps positive energy states into negative energy ones.
On the other hand, the time reversal is defined usually by the rebation—X with
supplementary condition of conservation of the energy sign. Obviously, the product
of charge conjugation and time reflecti®, which we denote b, obeys this
condition. The transformatiofs., was introduced by Schwinger (1951) (see also
Umezaveet al, 1954). This transformation interchanges particle and antiparticle
fields (fields with opposite signs g§ component).

For the first time, the time reversal, was considered by Wigner (1932).
Wigner time reversal does not change the sigjyoRelating different states of the
same particle, this transformation is an analog of the time reversal in nonrelativistic
quantum mechanics. Changing signs of the vegiof§ j, Wigner time reversal
corresponds to a reversal of the motion direction. Notice that sometimes the term
“time reversal” is used (instead of the term “time reflection”) for transformations
changing the sign of energy.

The transformatiori, is a finite transformation from the right generalized
regular representation of the proper Poircgroup, see (3.25) and (3.27). This
transformation does not change signs of the left generators (since all the right
transformations commute with the left ones) but changes signs of the current
vector and of some right generators. Hence, the left generators are transformed
similarly underTsch and Ty, = 1, Tsch. The transformations (as it was mentioned
above) changes the sign of the first and second components of the V8¢tors
and BR and does not change signs of all the physical quantities listed in the
Table IIl.
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6. EXTENSION OF THE PROPER POINCAR E GROUP IN
REPRESENTATION SPACES BY DISCRETE TRANSFORMATIONS

Since we have a clear definition of discrete transformations in represen-
tation spaces (or equivalently in the space of scalar functions on the group),
we can consider an extension of the proper Pom@moup by means of the
discrete transformations (further we call such a group the extended Rmincar’
group). Irreps of the extended Poineayfoup can differ from ones of the proper
Poincag group, because discrete transformations can unite nonequivalent irreps
or distinguish equivalent irreps of the proper Poircgroup. Indeed, different
fields with identical transformation rules under the left transformations carry
equivalent subrepresentations of the left generalized regular representation (3.1)
even if these fields have different transformation rules under the right transfor-
mations (5.3). The functions carrying equivalent representations of the proper
Poinca¥g group can be transformed differently under the discrete transformations.
Therefore, these functions carry nonequivalent representations of the extended
Poincag group.

The reflectionl and the identity operator form a finite growy, which
consists of two elements. The operatodistinguishes states having different
“charges” and “charge parities.” States with opposite ‘l‘charges” (which we denote
by ¢, andvy_) are interchanged by the action lafy, < ¢_. The states/, +
¥_ with definite “charge parity” are eigenfunctions bfwith the eigenvalues
+1 respectively. These states form a basis of one-dimensional irreps dhe
operators (t 1)/2 are projection operators on states with definite “charge parity.”

Operators of discrete transformations commute between each other and com-
mute (sign %" in Table IIl) or anticommute (sign="in Table I1l) with generators
of the proper Poincargroup. The latter means that discrete transformation can
only interchange eigenfunctions of the generator with opposite eigenvalues.

Below one can find a table, which lists parameters labelling finite-component
(with respect to spin) irreps of the proper and improper (i.e., extended by the space
reflection) Poinca groups.

Here the mass > 0, the spirs = 0, 1/2, 1,. . ., theintrinsic parityy = %1,
and the helicityp. = 0,4+1/2,41,.... The massn and sign ofpg label orbits in
the momentum space (the upper or lower sheet of hyperboloid or coaey
A label irreps of the little group$ Q(3) andSO(2), s, n and |A|, n label irreps
of the little groupsO(3) andO(2), respectively (see Mackey, 1968; Tung, 1985,
for details). The mass and the spin can by also defined as eigenvalues of Casimir
operators:

P f(x,2) =m?f(x,2), W2f(x,2) = —m?s(s+ 1)f (X, 2), (6.1)

whereW* is Lubanski—Pauli four-vector, arml= (z, z, Z, 2) are coordinates on
the Lorentz group.
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To construct irreps of the extended Poiregroup, we consider the action
of four independent discrete transformatidhsly, I, C in the space of the scalar
functions on the group.

1. Irreps of the extended by space reflecti®rPoincag group (improper
Poincag group) can be classified with the help of the little group method.
The space reflection distinguishes states with different intrinsic parties
and states with different (left or right) charges, or states with different
chirality. In the space of scalar functions, the chirality oper&fdis given
by Eqg. (B5). Fields with zero chirality do not change under the space
reflection.

2. The inversionly affects space-time coordinat&sonly. It couples two
irreps of the proper (or improper) Poineagtoup characterized by sign
po = £1into one representation of the extended group. Eigenvectdys of
are states with definite “energy parity.” However, since the sign of energy
Po is already used to label irreps of the proper group, this extension does
not creates new characteristics.

3. Aswas mentioned earlier, the operdtgs a spin part of th® C Ty, = I«l;
transformation and affects only spin coordinaresSincel, commutes
with all the left generators and with space reflectidnl, cannot change
parameters labelling irreps of the proper or improper Poangestp.l, in-
terchanges states with opposite eigenvaluég pd charge parityjc = +1
arises as eigenvalue bf Therefore, irreps of the extended kyPoincag
group are labelled by charge parity in addition to characteristics of
Table IV. Furhter, taking into account the close relation betwigeand
PCTy, we call the corresponding characteristicsk#s T,,-charge and
P CTy-parity.

4. The charge conjugatidd changes signs of all the generators. Thus, any
extension that include8 has to be considered separately. Notice mat
does not change andn. and similar tol, changes sign of the charg‘g
Whenever the proper Poineagroup is extended b, T, 1,, then addi-
tional extension b can be replaced by Wigner time reversgl= |,CT
as fourth independent discrete transformation. The latter transformation

Table IV. Parameters Labelling Irreps of the Proper and Improper Pa@r@arips

Proper Poinca group Improper Poincargroup
Massive case m, sign po, S m, signpo, S,
Massless case sigmy, A sign po, |A|, n®

aFor A # 0 massless irreps with = 1 are equivalent (Shaw and Lever, 1974;
Tung, 1985).
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corresponds to a reversal of particle motion direction and does not change
P-charge (chirality) and,(C P T,)-charge.

Thus, the irreps of the extended Poireayoup have two supplementary
characteristics with respect to irreps of the proper group: the intrinsic parity
and P CT,,-parity nc, which are associated with-charge (chirality) andP C T,,-
charge (the latter one distinguishes particles and antiparticles). In the space of
functlons on the group these charges are defined as eigenvalues of the operators
s ande respectively. Since for particles with half-integer spins these charges
are half-integer, such particles can’t have zero chirality or B@dr,,-charge (in
other words, they can’t be pure neutral with respect to the discrete transformations
under consideration).

Below we consider two types of extended Poimcgroup representations.
Irreps of the extended Poineagroup have definite intrinsic pariyand PC T, -
charge parityn.. Fields with definite intrinsic parity) or with definite charge
parity n¢ (e.g., “physical” Majorana field) are described by eigenfunctior of
I, respectively. Representations with defiriteharge (chirality) or with definite
P CTy-charge are reducible representations of the extended Peigicarp. Fields
with definiteP-charge (e.g., Weyl field) or with definiftC T,,-charge (e.g., Dirac
field) are mapped into fields with opposite charges under the corresponding discrete
transformations.

7. DISCRETE SYMMETRIES OF RELATIVISTIC WAVE
EQUATIONS. MASSIVE CASE

Here we explicitly construct massive fields on the Poiagaoup and analyze
their characteristics associated with the discrete transformations. On this base, us-
ing various sets of commuting operators on the Pomgaoup, we give a compact
group-theoretical derivation of basic relativistic wave equations and consider their
discrete symmetries. In particular, this allows one to present a group-theoretical
interpretation of two possible signs of mass term in first order equations. Then
we classify solutions of higher spin relativistic wave equations with respect to the
extended Poincargroup.

Consider eigenfunctions of the operatp;s(plane waves). Fan # 0, there
exists a rest frame, whexedependence is reduced to the fa@®f™’. Linear in
z functions describe spin/2 particles. For a fixed mass, there are 16 linearly
independent functions of such kind,

Vv, V.
L efimiz  ghmxp (7.1)

. imx0% +imx0x
R:etfimz. e Z
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These functions can be classified (labelled) by means of left generators of the
Poinca€g group and operators of the discrete transformat®yre. The eigenvalues
of the left generatorég (in the rest frame under consideratidn= é3) andf’ are
the spin projection (fow, « = 1 andwe, @ = 2, we haves; = 1/2 respectively) and
the energypg. The sign ofpg, along with the masm and the spirs, characterizes
nonequivalent irreps of the proper Poinegroup. The operatdy interchanges
states with opposite signs aqf; the operatorP interchanged - and R-states
(states with opposite chiralities); and the operatrmnd |, interchange particle
and antiparticle states. The latter states belong to the spa@eslV_ respectively.

In contrast to the operat@, the operatot, does not change signs of energy and
chirality.

However, the states (7.1) with definite chirality are transformed under re-
ducible representation of the improper Poircgroup. Irreps of the latter group
are characterized by the intrinsic parityln the rest frame, states with definife
are eigenfunctions of the operaterP f (x, z) = nf (X, 2),

\A Vo
n=—1:efmC(z 4 3.) efimi(z _7,) (7.2)
n=1:e""z —2,) €™z +2,)

As above, the operatofs and |, interchange functions from the spadés and

V_. On the other hand, states with different intrinsic panity= +1 (unlike
states with different chirality) are not interchanged by operators of discrete
transformations.

Both the states (7.1) and (7.2) are eigenvectors of the Casimir opefAtors
and W2 with the eigenvaluesn? and —(3/4)m2. But the only states (7.2) are
transformed under irrep of the improper Poireegroup. Besides, the states (7.2)
(unlike the states (7.1)) are solutions of the equations

(P, I*+m9f(x,22)=0, (p,[*Fm9f(x,z2)=0. (7.3)

Heres = 1/2, the upper sign correspondsit@ign po = 1 and lower sign corre-
sponds tay sign po = —1. The operato, ' (an explicit form of * is given

by (B3)) is not affected by the space inversion and the charge conjugation. The
spaced/, andV_ are also invariant under the space reflection, however, they are
interchanged under the charge conjugation.

Considering the action of the discrete transformationg@omponent of free
equation current, we have seen that whenever particles are described by functions
from V., then antiparticles are described by functions frgm This turns es-
pecially clear when we include an interaction with an external electromagnetic
field. Acting by the charge conjugatid@h (which acts as the operator of complex
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conjugation on scalar functions on the group) on the equation
(P —eALNI" £m9f(x,22) =0, f(x,z2) eV, (74

we see that functioné(x, z, 2) € V_ obey the same equation with opposite charge
sign:

(P, +eA N +m9f(x,2,2)=0, f(x,z2)eV.. (7.5

Substituting the function$(x, z, 2) = ZpW(x) and f (x, z, z) = Z, YO (x)
into Egs. (7.4) and (7.5) (see also (4.1) and (4.2)), we obtain two Dirac equations
for charge-conjugate bispinods(x) and w9 (x),

(B, — €AY £ MW () =0, ((B, +eA.))y" £mwO(x)=0.

Thus we have to use the different scalar functions on the group to describe
particles and antiparticles and hence two Dirac equations for both signs of charge,
respectively. That matches completely with results of the consideration by Gavrilov
and Gitman (2000), where it was shown that in the course of the consistent quan-
tization of a classical model of spinning particle namely such (charge symmetric)
guantum mechanics appears. Such a mechanics is completely equivalent to one-
particle sector of the corresponding quantum field theory.

In the next section we continue to consider spji2-tase and give an exact
group-theoretical formulation of conditions that lead to the Dirac equation.

In the general case for the classification of functions corresponding to higher
spins one has to use a maximal set of the commuting operators on the group, for
example,

p.. W2 pS, & -B? SB, S5, BS. (7.6)

This set includes functions of left and right generators. In the rest ffﬁn:e 0,

thus the maximal set can be obtained from (7.6) by chang8p S;. Functions

from the space¥, andV_ depend on eight real parameters, therefore, one can
consider only eight operators. As such operators we chose (the problem of con-
structing maximal sets of commuting operators in representation spaces of the
Poinca¥g group was discussed by Barut and Raczka (1977), Gitman and Shelepin
(2001), and Hai (1969))

p,.. W2, pS (S in the rest frame)p, ', 5. (7.7)

Consider eigenvalue problem for the operators (7.7). For functions from
the spaced/, andV_ one can show that if an eigenvalue bjf“ is equal to
+ms where 2 is the power of polynomial, then the eigenvalue of the operator
W2 is also fixed and corresponds to the spifiGitman and Shelepin, 2001).
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Thus, the equations
p2f(x,2) = m?f(x,2), P,I"f(x,2)=+tmsf(x,2),
§1(x,2) = +sf(x, 2),

pick out states with definite mass and spin.
Depending on the choice of the functional space and of the sign of the mass
term, the second equation (7.8) can be written in one of the four forms:

(7.8)

Vv, V.
(P I* +m9f(x,22) =0, (p,[*—-m9f(x,z2)=0, (7.9)
(p " —m9f(x,22)=0, (p,[*+m9f(x,z2)=0. (7.10)

In the rest frame and for definita ands, solutions of Egs. (7.9) and (7.10) are
given by (7.11) and (7.12), respectively,

V, Vo

M (7 31)5T (2 £ 25)° % €F™(2 o 29) (2 £ 2,
nsignpyg = -1, (7.11)

e £ 22 £ 2y €M@ £ 2T £ 27,
nsignpy =1, (7.12)

Here the sign ofypo is specified for half-integer spins; for integer spins, all
the solutions have = 1. Solutions (7.11) and (7.12) are eigenfunctions for the
Casimir operator§?, W2, and for spin projection operat& with the eigenvalues
m?, —s(s 4+ 1)m?, andsg, —S < 3 < S respectively.

For half-integer spins, a general solution of the system (7.8) with definite
sign of the mass term has definite sigm@f. Such a solution carries a reducible
representation of the improper Poinegroup. The representation is a direct sum
of two irreps with opposite signs gfand pg. Hence, the general solution contains
2(2s + 1) independent components. Singés invariant under discrete transfor-
mations, the representation carried by the solution remains reducible with respect
to the extended Poinaagroup.

Thus, for half-integer spins, the sign of the mass term in the Eqgs. (7.9) and
(7.10) coincides with the sign of the product

nPoSE. (7.13)

Recall that the sign of] distinguishes particles and antiparticles; this sign is
fixed by the choice of the spadg or V_. In each the spacé, orV_, the general
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solution carries a direct sum of two irreps of the improper Pomgesup, which are
characterized by sigmw, n or —signpo, —n. For integer spins, in each spa¢e or

V_, the general solution carries a direct sum of two irreps, which are characterized
by fixed intrinsic parityyp = 1 and different signs ofy.

As was demonstrated above, the set (7.7), which includes the first order
in 9/0x operatorf),f“, specifies some characteristics of representations of the
extended Poincargroup. As it was shown by Gitman and Shelepin (in press),
in the case of finite-dimensional representations of the Lorentz group, the system
(7.8) is equivalent to Bargmann—Wigner equations. In turn, for half-integer spins,
the latter equations are equivalent to Rarita—Schwinger equations (Ohnuki, 1988).
Hence, the structure of solutions of Bargmann—Wigner and Rarita—Schwinger
equations is similar to the structure of solutions of Eq. (7.8).

Considering equations that fix not omtyands but some additional charac-
teristics of the extended Poineagioup representations, such as energy or charge
signs, we cannot be sure that all the discrete transformations are symmetry ones for
such equations. For example, the discrete symmetry group for the Egs. (7.9) and
(7.10) with definite sing of the mass term (and therefore discrete symmetry groups
of the Dirac and Duffin—Kemmer equations) includes the only transformations that
do not change the sign @b S}.

The transformation®, C, T,, do not change sign qﬁ0S§ and, therefore, do
not change sign of the mass term in the first order equations under consideration.
An additional (fourth) independent transformation changes sinw 8§ and cor-
respondingly sign of the mass term. As such a transformation, we can consider,
for example, the inversioty or Schwinger time reversadly,

Majorana equations (associated with infinite-dimensional irref .62, C),
Majorana, 1932; Stoyanov and Todorov, 1968) are only invariant under discrete
transformations that do not change signpgf(Naka and Gat, 1971; Oksak and
Todorov, 1968).

On the other hand, there exists a formulation that admits all four independent
discrete transformations as symmetry transformations. This formulation is based
on the use of set (7.6) of commuting operators and the representa®) s (0s)
of the Lorentz group. To fix a representatias®)s (0s), one can use Casimir
operators of the Lorentz group or (for the subspatgshe operatorégf, é?; the
set (7.6) contains all these operators. It was shown (Gitman and Shelepin, 2001)
that equations

p2f(x,2) = m?f(x,2), S{f(x,2)=+sf(x,2), iBRf(x,2)=+sf(x,2)
(7.14)

fix the spin of scalar functions froid... In the rest frame solutions of Eq. (7.14)
with a definite spin projectios; have the form (in contrast to (7.11) and (7.12),
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signs in exponents and in brackets can be chosen independently):
Vi 1 €M(Z)7(2)% £+ (20 (22)°), (7.15)
Vo @M)@Y £ (20)72(2:)°). (7.16)

The sign in brackets defines the intrinsic parity. For half-integer spins, the upper
sign corresponds tp = 1 and the lower sign correspondsrte= —1. For integer
spins, the upper sign in (7.15) and the lower sign in (7.16) correspondd,

and the opposite signs correspondhte- —1. Thus, for each spadé, orV_, a
general solution of the system has €(2 1) independent components and carries

a reducible representation of the improper Poiaagwdup. This representation
splits into four irreps labelled by different signs:pand po.

The formulation under consideration allows the coupling of higher spins
with an external electromagnetic field. Indeed, unlike Eq. (7.8), the system (7.14)
contains the only one equation with space-time derivatiye@Notice that the first
equation of (7.8) is a consequence of other two ones onlg ferl/2 ands = 1
(Gitman and Shelepin, in press), i.e., for Dirac and Duffin—-Kemmer equations).
Particles with definite spisand massn are described by Klein—Gordon equation
with polarization,

[(p—eA?— 28 Fu —m] (=0,

wheres (x) carries the representatios0f & (0s) of the Lorentz group (Feynman
and Gell-Mann, 1958; Hurley, 1971, 1974, lonesco-Pallas, 1967; Kruglov, Preprint
hep-pY9908410). Fos = 1/2, this equation is the squared Dirac equation. So-
lutions of the Klein—Gordon equation with polarization are casual, they have
4(2s + 1) independent components (for any sign of energy there are solutions
with both signs of the intrinsic parity = +1), two times more components than
solutions of Dirac and Duffin—-Kemmer equations.

We have seen that in the massive case, the transform&iandT,, map any
irrep of the improper Poincargroup into itself. The operat®t labels irreps of the
improper Poincargroup. Wigner time reversal, corresponds to the reversal of
the direction of motion and does not change characteristics of representations of the
Poincag group extended by other discrete transformatigreng signs of energy
andP CT,-charge). For example, for spin-dparticles at the rest frame (see (7.1)),
we haved™’z¢ % eimxoza, and the transformatiom,, reduces to the rotation by
the angler. In the general casé,, is not reduced to some continuous or discrete
transformations. The transformation changes signs both of momentum vector and
spin pseudovector, wherelschanges signs of the momentum vector only.

Two discrete transformations interchange nonequivalent representations of
the extended Poincaigroup. As such transformations one can chdqsand |,
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or Iy andC, as it is done below, where the first sign is onelRat T,,-charge and
the second sign is one @b:

Let us touch the problem of relative parity of particles and antiparticles.
As it was first pointed out by Nigam and Foldy (1956) for spjtftase, such
problem admits different treatments; discussions for another spins can be found
by Ahluwalia (1996), Ahluwaliget al.(1993), and Silagadze (1992). Consider the
problem in the framework of the representation theory of the extended Peincar’
group.

As was mentioned above, the charge conjugationR@d,,-transformation
cannot change the intrinsic paritysinceC andl, commute withP. Suppose that
a particle is described by an irrep of the improper Poia@aoup. Then we may
consider two different possibilities: (a) the corresponding antiparticle is described
by PCT,-conjugate (or charge-conjugate) irrep, in such a case parities of the
particle and the antiparticle must coincide for any spin; (b) the corresponding
antiparticle is described by an irrep, which is labelled not only by the opposite
P CTy-charge but also by the opposite parjtyin the latter case, irreps describing
particles and antiparticles are not connected by transformafiarsP C T,,.

Usually, the relation between parities of particles and antiparticles is derived
from the corresponding wave equations. Consider some relativistic wave equation
describing field with definite spin and mass. As a rule, a general solution of a
given equation carries a reducible representation of the improper Peigicarp;
irreducible subrepresentations (or their charge conjugated) are identified with par-
ticle and antiparticle fields. Since different equations have different structure of the
solutions, both possibilities mentioned above can be realized in such an approach.

Consider some examples. One can suppose that$ol/2 “wave function
of antiparticle is a bispinor charge-conjugate to some negative frequency solution
of the Dirac equation” (Berestetslét al., 1971). Free Dirac equation has solu-
tions corresponding to two nonequivalent irreps of the improper Pargraxip;
these irreps are characterized by opposite signsoflpo. If a positive frequency
solution has the intrinsic parity, then negative frequency solution has the oppo-
site intrinsic parity—n». This parity is not changed under the charge conjugation
and intrinsic parities of particles and antiparticles are opposite. Solutions of the
Duffin—-Kemmer equation with different signs of energy have identical intrinsic
parities. Thus, a standard point of view is that the intrinsic parities for spin one
particles and antiparticles are the same. However, studying some relativistic wave
equations associated with the representatisfy< (0s) of the Lorentz group,
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one can conclude that intrinsic parities of particles and antiparticles are opposite
for integer spins (Ahluwalia, 1996; Ahluwalet al., 1993).

8. GROUP-THEORETICAL DERIVATION OF THE DIRAC EQUATION

Let us consider a pure group-theoretical derivation of the Dirac equation
in detail. (An heuristic discussion of the problem can be found by Ahluwalia
(1996), Ahluwaliaet al. (1993), Gaioli and Alvarez (1995), and Ryder (1988).)
This derivation is based on the construction of the extended Peigratip rep-
resentations with some fixed characteristics. In addition to the evident conditions
(fixing the mass and spinor representation of the Lorentz group) it is necessary to
demand that states with definite energy possess definite parity, and also that the
states possess defini®C T,,-charge. As we will show, the sign of mass term in
the Dirac equation coincides with the sign of the product of three characteristics
of the extended Poincargroup representations, namely, the intrinsic parity, the
sign of PCT,-charge, and the sign of energy. Notice that the consideration and
attempts of physical interpretation of two possible signs of the mass term in the
Dirac equation have a long history (see, in particular, Barut and Ziino, 1993; Brana
and Ljolje, 1980; Dvoeglazov, 1996; Markov, 1964, and references therein).

Consider a representation of the extended Poigesp with the following
characteristics: (i) definite mass > 0; (ii) definite PCT,-charge; (iii) states
with definite sign of energy possess definite intrinsic payignd vice versa; and
(iv) fields f (x, z) with above characteristics is linear an(the latter corresponds
to fixing the representatior%(O) (e %) of the spin Lorentz subgroup).

According to (iii), this reducible representation of the extended Poincar’
group, which we denote by, is the direct sum of two representations with the
opposite signs of energy and intrinsic parity.

The suppositions (ii) and (iv) allow the only scalar functions of the form

fo(X,2) = zyr+ 291, f(X,2)=2Zyr+2VL, (8.1)

where we have introduced columits = (¥%), ¥r = (V). These functions cor-
respond to two possible signs BIC T,-charge. According to (i), there exist func-
tions f(x, z) corresponding to particles in the rest frame such fidt(x, z) =
Po f (X, 2), P T (X, 2) = 0, where the energpo = eem, eg = signpy. According
to (iii), these functions are characterized by the payjtgtefined as the eigenvalue
of the space inversion operat®f (x, z) = nf (X, z). Using the latter equation and
the relation (3.28), we obtainir(p) = —nv (P) for the functionsf . (x, z), and
Yr(P) = ny(P) for the functionsf_(x, z) wherep = (egm, 0). Both the cases
can be described by one equation

Yr(P) = ecnL(P), (8.2)
whereg, = sign§ is the sign of the charge.
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The Lorentz transformation of the spinogs(p) = Uyr(P), vL(p) =
(UT)~1y (P) results in a transition to a state, which is characterized by the mo-
mentumP = U P,U T, whereP = p.o*, Py = eeMoyg. Thus, we obtain

eemUUT = p,o”. (8.3)

Taking into account the transformation law for spinors, we can rewrite (8.2) in the
form

Yr=eUUTyL, Y =ecn(UUT) tyr.
Using (8.3), we can expressU ' in terms of the momentum,

MyRr = eceeNPuo’ YL, My = eceenpPuo’yr,

and combine these two equations into the one

(Puy” — eceenm)¥ =0, y" = (U—O,L U;) , W= (17/?) . (8.4)

Finally, for plane waves, one can change the momeryiy the corresponding
operatorp,. Since the plane waves form a basis of the representatioand
the superposition principle holds, the states belonginfst@are subjected to the
equation

(P " — eceenm)¥ = 0. (8.5)

In the above consideration, we could use a more restrictive condition of
irreducibility of the representation of the improper Poirecgroup instead of (iii).
But, in any case, general solution of the equation obtained includes states with both
signs of intrinsic parity and energy and carry reducible representation obeying
the condition (iii). The above consideration also shows the impossibility of the
derivation of the Dirac equation only in terms of the proper or improper Pancar”
group representations, since the Dirac equation connects signs of the epergy
of the parityn, and of the charge., which characterize representations of the
extended Poincargroup.

9. DISCRETE SYMMETRIES OF RELATIVISTIC WAVE
EQUATIONS. MASSLESS CASE

For spin- tensormasslessﬁeldswnhmtegerand half-integer spins, eigenvalues
of the Casimir operatorg?® andW’ are zero (see, e.g., Tung, 1985). Such fields
obey the conditions

W, f(x,2) = AP, T (x, 2), (9.1)
wherex is the helicity. In particular, for = 0 we have
PST(x, 2) = APy (X, 2). (9.2)
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The transformation$® and C change the sign in Eq. (9.2); on the other hand,
the transformationsy, |, Tsch, Which change the sign of mass term in the Dirac
equation, are symmetry transformations of the Eq. (9.2). Discrete symmetries of
the Eq. (9.2) are generated by three independent operations. For example, these
could bely, CP, Ty, the first of which is not a symmetry transformation for the
Dirac equation.

The Weyl equationpo W(x) = + p°W(x) are particular cases of Eq. (9.2) for
helicities£+1/2, respectively; these equations can be obtained by the substitution
of the functionf (x, z) = ¥, (x)z* into (9.2).

Massless irreps of the proper Poinegroup are labelled by two numbers (see
Table V), namely, by the helicity = pS/ po and bypg sign. If itis not necessary
to consider states with definite parity, then mstead/pfand V_ |t is natural to
consider four subspaces of functioh&, z), f(x, 2), f(x, z) f(x, _)

In each subspace the Eq. (9.2) has four solutions with definite chigality
These solutions describe a motion along the a®isind are labelled by signs
of the helicity andpy. Considering the action of the operat@sand |, on the
solutions, we can see that these solutions describe particles that do not coincide
with their antiparticles.

For particles withpy > 0 we have

A=s5: ei(px°+px3)(zl)25, ei(px°+px3)(zl)23’ (9.3)

A= _s" ei(px°+px3)(22)25’ ei(px°+px3)(£,2)25, (9.4)
and for antiparticles withpg > 0

A=s" ei(px°+px3)(Z1)Zs1 ei(px°+px3)(z*i)2s, (9_5)

ho= —s: dPCPRY PP (728 (9.6)

The operator® andC interchange states with opposite chirality. The operator
I;, interchanging the states with opposR€ T,,-charge, does not change signs of
the chirality and of the energy. The signs of the helicity and of the chirality are
changed simultaneously under the discrete transformations.

Above we have developed the description of particles which differ from their
antiparticles. Letus consider as an example the description of pure neutral massless
spin-1 particles (let say photons) in terms of a scalar field on the Peigcatp.
Such a particle coincides with its ant|part|cle (it has zP@T,-charge) and has
the chirality+1. Quadratic irz = (z, z, z, z) functions that obey these conditions
depend orr® 28, Zyzﬂ only and must be zero vectors ng Thus, pure neutral
massless spin-1 particles are described by scalar functions of the form

f(x,2) = xep()Z 2" + ¥ (X) 2025 = 5 Fun()a™, 9.7)
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where
1 —_ * -k *
Qu = —Qu = E((ouv)aﬁzazﬂ + (qu)dﬁ z¢ Zﬂ)r 40 = Quo, (9.8)

Frn(¥) = =2(00)ap x“* (X) + (0)a3 ¥ 2 (X)) (9.9)

The functionsy.s (x) andy,3(x) must be symmetric in their indices; otherwise by
virtue of the constraint'z> — z2z' = 1 (which is a consequence of the unimod-
ularity of SL(2, C)) the field (9.7) can contain components (X) and s (X)

of zero spin. Therefore, formulations in terms)@f (x), ¥, 3(x), andF,,(x) are
equivalent. Left and right fields can be described by the functions

FL 00 = Fuo(X) = i Fuu(X) = —4050)ap v (X), (9.10)
FEU(X) = FW(X) +i Iflw(x) = —4(alw)aﬁx"‘ﬂ(x), (9.11)

whereF,,,(X) = €0 F7.
To describe states with a definite helicity, the functions (9.7) should obey the
equation (9.2) foh = +1,

(S Po) f(x,2) = 0. (9.12)

For po > 0, the Eq. (9.12) has four solutions which correspond to a motion along
the axisx®. These solutions differ by signs of helicity and chirality:

A=1:PPAZ dPHpX) 7.7 (9.13)
A= =122 ) 55 (9.14)

Fixing the relative sign between helicity and chirality (this sign distinguishes the
equivalentrepresentations of the extended Poenganip), we obtain two solutions
corresponding to two polarization states.

Substituting the function§_(x, z) = ¥*#(x) 212;3 andfr(X, 2) = xap(x)2*2*
into (9.12) (forx = +1 respectively) and going over to the vector notation in ac-
cordance with (9.10) and (9.11), we obtain equationgg(x) andF{ (x),

0"F,(x) =0, 9"FJ(x)=0. (9.15)
Obviously they are equivalent to the Maxwell equations
0"Fu(x) =0, 3"F(x)=0. (9.16)

As is known, the second equation resultsjp.(x) = 9, A, — 3, A, where com-
plex potentialsA,, are introduced.
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Taking into account the action of discrete transformationg (see (3.28)),

we findg#” B (—1)Youtoougry giv 3 —ghv, g S g*’. Thenas aconsequence
of (9.7), we obtain

P:F,(X) = (=100 F, (X), AX)— —(=1P*A,(X); (9.17)

l2: Fuu(X) = —Fu(X), A.X) = —AL(X), (9.18)

C:Fu(®) = Fuw(), AuX) = Ay (X). (9.19)

Itis easy to see that tli@transformation, acting on the functions (9.7) as a complex
conjugation, interchanges states with opposite helicities. Thtransformation
cannot be considered separately for left and right fields (see, e.g., Ohnuki, 1988).
The transformatioriz does not changes the functions (9.7).

In contrast to the initial Eq. (9.12), whepg sign is changed under the space
reflection and the charge conjugation, the Eq. (9.16) are invariant under the latter
transformations since left and right fields entefFjn (x) on an equal footing. Thus,

P, Ix, C, Ty, are symmetry transformations for the Eg. (9.16).

We can consider real and imaginary part$Qf(x) as two independent real
fieldsF{Y(x) andF 2)(x); they satisfy the same Eq. (9.16) and are characterized by
opposite parities with respect to the charge conjugation operation. However, these
fields do not describe states with a definite helicity since they include both left and
right components according to (9.9). One ought to notice Iﬂj@(x) and Ffv(x)
cannot be treated as classical electromagnetic fields, but can be treated as wave
functions of left-handed and right-handed photons (Akhiezer and Berestetskii,
1981, Bialnicki-Birula, 1994; Ohnuki, 1988).

10. CONCLUSION

We have shown that the representation theory of the proper Peigcanp
implies the existence of five nontrivial independent discrete transformations cor-
responding to involutory automorphisms of the group. As such transformations
one can choose space reflectiBninversionly, charge conjugatio, Wigner
time reversalT,,. The fifth transformation for the most fields of physical in-
terest (except the Majorana field) is reduced to the multiplication by a phase
factor.

Considering discrete automorphisms as operators acting in the space of the
functions on the Poincaigroup, we have obtained the explicit form for the discrete
transformations of arbitrary spin fields without any appealing to relativistic wave
equations. The examination of the action of automorphisms on the operators,
in particular, on the generators of the Poirecgroup, ensures the possibility to
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get transformation laws of corresponding physical quantities. The analysis of the
scalar field on the group allows us to construct explicitly the states corresponding to
representations of the extended Poieogmup, and also to give the classification

of the solutions of various types of relativistic wave equations with respect to
representations of the extended group.

Since in the general case a relativistic wave equation can fix some char-
acteristics of the extended Poineagroup representation, which are changed
under the discrete transformations, only a part of the discrete transformations
forms symmetry transformations of the equation. In particular, discrete symme-
tries of the Dirac equation and of the Weyl equation are generated by two dif-
ferent sets of the discrete transformations operat®rs;, T,, and PC, I, Ty
respectively.

Being based on the concept of the field on the group and on the consideration
of the group automorphisms, the approach developed can be applied to the analysis
of discrete symmetries in other dimensions and also to other space-time symmetry
groups.

APPENDIX A: THE LEFT AND RIGHT GENERATORS OF
SL(2,C) IN THE SPACE OF SCALAR FUNCTIONS
ON THE POINCAR E GROUP

The left and right spin operators have the form (Gitman and Shelepin, in
press)

~ 1 * %

Sr( = E(Zo‘kaz — ZO’kai) + -y

~ i %

By = E(Zakaz + ngaé) 4+, z= (Zl ZZ), 9, = (8/8218/322)T; (A1)
AR 1, . * 1.1

S = —E(Xakax — X(Tkax*) +---, x=(Z2),

~ i *

B = ~5 (X8 + X /0z249/0zY)"; (A2)

By three dots we have denoted here expressions obtained from the preceding ones
by the substitutiom — z = (' 2%), x — x’ = (2 Z%). Two first equations can be
rewritten as

*

S = %((o““)fz“a,s + (") 2:0") — .. (A3)
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whered, = 9/02%, 9% = 8/02,,
i _ o i ,
(0").? = _Z(a“E” —0"0"),", (0"")* = ——(o“ " —oloh)s,  (A4)
and c.c. is complex conjugate term.

APPENDIX B: EQUATIONS FOR DEFINITE MASS AND SPIN IN
TERMS OF SCALAR FUNCTIONS ON THE POINCAR E GROUP

The equations for scalar functiori§x, z, z) on the Poincag group

p?f(x,2 2) = m*f(x, 2 2), (B1)
P, [ f(x 2 2) = msf(x, z 2), (B2)

where
M = %(E’W“Zoﬁa + 0" Z"9%) — c.C. (B3)

describe a particle with fixed mags > 0 and spirs, if we suppose that (x, z, 2)

is a polynomial of the powersdn z, z (Gltman and Shelepln in press). Analogous
statement also holds for polynomialnz functionsf (x, z, z). Operatord™* and
S"” obeySQ(3, 2) group commutation relations

(8% ] =i T — gy, [0, 1] = -1 8", (B4)

These are commutation relations for the matrieég2. Together with the chirality
operator

1 .
= 2(2"0, — 20%) - cc., (B5)

and the operator§™ = i[['*, ['%], &;, the operatorsi™*, & form a set of
16 operators, which do not change the power of polynomiiés z, z) in z, z.

Being written in spin-tensor notation, the equation (B2)det 1/2 appears
to be the Dirac equation and fer= 1 the Duffin—Kemmer equation. In the general
case, being written in spin-tensor notation, the system (B1)—(B2) consists of the
Klein—Gordon equation and symmetric Bhabha equation (Gitman and Shelepin,
2001). This system is equivalent to the Bargmann—-Wigner equations (Gitman
and Shelepin, 2001; Loidet al,, 1997).
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