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We present a consistent approach to finding discrete transformations in representation
spaces of the proper Poincar´e group. To this end we establish a correspondence between
involutory automorphisms of the group and the discrete transformations. Such a cor-
respondence allows us to describe the action of discrete transformations on arbitrary
spin-tensor fields without any use of relativistic wave equations. Extending the proper
Poincaré group by the discrete transformations, we construct explicitly fields carrying
corresponding irreps.

KEY WORDS: Poincaré group; discrete symmetries; relativistic wave equations.

1. INTRODUCTION

It is well known that Lorentz transformations in Minkowski space are divided
into continuous and discrete ones. Transformations that can be obtained continu-
ously from the identity form the proper Poincar´e group. A classification of irre-
ducible representations (irreps) of the Poincar´e group was given by Wigner (1939)
(see also Barut and Raczka, 1977; Kim and Noz, 1986; Mackey, 1968; Ohnuki,
1988; Tung, 1985). In fact, the representation theory of the proper Poincar´e group
provides us only by continuous transformations in representation spaces. At the
same time, a regular way to describe discrete transformations in such spaces on
the ground of purely group-theoretical considerations does not exist. Moreover,
it turns out that there is no one-to-one correspondence between the set (P, T) of
discrete transformations in Minkowski space and a set of discrete transformations
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in representation spaces. The latter set is wider than the former one (it includes
P, T, C, Tw).5

As a rule, finding discrete transformations in the representation spaces de-
mands an analysis of corresponding wave equations, and has, in a sense, heuris-
tic character. Besides, the possibility to have different wave equations (and with
different symmetries) for particles with the same spin results in a certain “fuzzi-
ness” of the definition of discrete transformations in the representation spaces
(see, e.g., Benn and Tucker, 1981; Lee and Wick, 1966). All that stresses the
lack of a regular approach to the definition of such discrete transformations and,
therefore, creates an uncertainty for using discrete transformations as symme-
tries. More detailed consideration have led Lee and Wick (1966) to the conclusion
that “the situation is clearly an unsatisfactory one from a fundamental point of
view.”

Attempts to define discrete transformations in representation spaces without
appealing to any relativistic wave equations or model assumptions have a long
history. In particular, some features of discrete transformations were studied on
the base of their commutation relations with generators of the Poincar´e group
(Lee and Wick, 1966; Shirokov, 1958, 1960; Wigner, 1964). One ought to mention
also the identification of discrete transformations with (anti)automorphisms of
the algebra of observables (Bogolyubovet al., 1990) and the consideration of an
action of discrete transformations in terms of the operators of second quantization
(see, e.g., Peskin and Schroeder, 1995; Weinberg, 1995). These approaches allow
one to avoid straightforward definition of discrete transformations as symmetry
ones of relativistic wave equations, but in any case one uses properties of the Dirac
equation solutions to cancel the residuary ambiguity. Thus, the problem of an
explicit construction of discrete transformations in representation spaces remains
still open.

In the present work, we offer the consistent approach to constructing discrete
transformations. This approach is completely based on the representation theory
of the proper Poincar´e group. Our consideration contains two key points.

First, we introduce a scalar field on the proper Poincar´e group. This field
carries representations with all possible spins and depends on coordinatesx on
Minkowski space and coordinatesz on the Lorentz group. The latter coordinates
describe spinning degrees of freedom. Some of discrete transformations affect
only space-time coordinatesx and some of them affect only spin coordinatesz.
Using the scalar field we get a possibility to describe “nongeometrical” trans-
formations (ones that leave space-time coordinatesx unchanged, in particular,
the charge conjugation) on an equal footing with reflections in Minkowski space.

5 There are three different transformations related to the change of the sign of time: time reflectionT
considered in detail by Gel’fandet al.(1963), Wigner time reversalTw (Wigner, 1932), and Schwinger
time reversalTsch (Schwinger, 1951; Umezavaet al., 1954).
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Expanding the scalar field in powers ofz, we obtain conventional spin-tensor fields
as corresponding coefficient functions.

Second, we identify discrete transformations with involutory automorphisms
of the proper Poincar´e group.

It is known that there are two types of the automorphisms. An inner auto-
morphism of a groupG can be presented in the formg→ g0gg−1

0 , whereg0 ∈ G.
All other automorphisms are called outer ones. The outer automorphisms of the
proper Poincar´e group can’t be reduced to continuous transformations of the group,
they correspond to reflections of coordinate axes or to dilatations. A connection
between some discrete transformations and outer automorphisms was mentioned
by Gel’fand et al. (1963), Gitman and Shelepin (2001), Kuo (1971), Michel
(1964), and Silagadze (1992). In particular, study by Kuo (1971) contains an idea
that outer automorphisms of internal-symmetry groups may correspond to discrete
(possibly broken) symmetries. In this context, one ought to point out the work of
Gel’fand et al. (1963), where an outer automorphism of the Lorentz group was
considered as a starting point to define space reflection.

Studying involutory (both outer and inner) automorphisms of the proper
Poincaré group, we describe all discrete transformations and present their action
on arbitrary spin-tensor fields without appealing to any relativistic wave equations.

One has to mention a discussion in the literature about the sign of the mass
term in relativistic wave equations for half-integer spins (see, e.g., Ahluwalia,
1996; Barut and Ziino, 1993; Brana and Ljolje, 1980; Dvoeglazov, 1996; Markov,
1964). We apply our approach to present a solution for such a problem.

The paper is organized as follows.
In Section 2 we show that outer involutory automorphisms of the Poincar´e

group are generated by reflections in Minkowski space. Thus, we establish
one-to-one correspondence between such automorphisms and reflections.

In Section 3 we introduce the scalar field on the proper Poincar´e group and
derive transformations of the field under outer and inner automorphisms. As a
consequence we find the action of all the discrete transformations (including space
and time reflections, charge conjugation, and time reversal) on such a field.

In Section 4, decomposing the scalar field in powers ofz, we obtain the action
of discrete transformations on conventional spin-tensor fields.

In Section 5 we derive transformations for generators of the Poincar´e group
and for some other operators under the automorphisms. That allows us to study in
detail all the discrete transformations. In particular, we discuss a relation between
Wigner and Schwinger time reversals.

In Section 6 we extend the Poincar´e group by the discrete transformations
and describe characteristics of irreps of the extended group.

In Section 7–9 we construct explicitly massive and massless fields with differ-
ent characteristics corresponding to the discrete transformations. We establish a re-
lation between our approach and conventional theory of relativistic wave equations.
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Finally we classify solutions of relativistic wave equations for arbitrary spins with
respect to representations of the extended Poincar´e group.

2. REFLECTIONS IN MINKOWSKI SPACE AND OUTER
AUTOMORPHISMS OF THE PROPER POINCAR É GROUP

Here we are going to demonstrate how discrete transformations in Minkowski
space can generate some outer involutory automorphisms of the proper Poincar´e
group. Recall that Poincar´e group transformations

x′µ = 3µ
νx
ν + aµ, (2.1)

in Minkowski space (ηµν = diag(1,−1,−1,−1), x = (xµ, µ = 0, 1, 2, 3)) are
defined by pairs (a,3), wherea = (aµ) is an arbitrary vector and the matrix
3 ∈ O(3, 1). They obey the composition law

(a2,32)(a1,31) = (a2+32a1,3231). (2.2)

Any matrix 3 can be presented in one of the four forms:30,3s30,3t30,
3s3t30. Here30 ∈ SO0(3, 1), whereSO0(3, 1) is a connected component of
SO(3, 1), and matrices3s = diag(1,−1,−1,−1),3t = diag(−1, 1, 1, 1) corre-
spond to space reflectionP and time reflectionT . ThenPT = Ix = 3s3t . Pairs
(a,30) with the composition law (2.2) form the groupM0(3, 1), which is a semidi-
rect product of the translation groupT(4) and the groupSO0(3, 1).

Acting by3s on the equalityx′ = 30x + a, we obtain

3sx
′ = 3s303

−1
s 3sx +3sa, or x̄′ = 3̄0x̄ + ā,

where

x̄ = 3sx = (x0,−xk), ā = 3sa = (a0,−ak), 3̄0 = 3s303
−1
s =

(
3T

0

)−1
.

In a similar manner, using the operationsT andIx, we obtain finally thatP, T, Ix

generate three outer involutory automorphisms ofM0(3, 1),

P : (a,30)→ (
ā,
(
3T

0

)−1)
;

T : (a,30)→ (−ā,
(
3T

0

)−1)
; (2.3)

Ix : (a,30)→ (−a,30).

Notice thatP andT generate the same automorphism of the groupSO0(3, 1).
Consider now a groupM(3, 1), which is an universal covering group for

M0(3, 1). M(3, 1) is the semidirect product ofT(4) andSL(2, C) and will be
called further the proper Poincar´e group. (The extension of the proper Poincar´e
group by the space reflection will be called below the improper Poincar´e group.)
It is known that there is one-to-one correspondence between any vectorsv from
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Minkowski space and 2× 2 Hermitian matrices6 V (see, e.g., Barut and Raczka,
1977; Buchbinder and Kuzenko, 1995; Streater and Wightman, 1964):

vµ ↔ V = vµσµ, vµ = 1

2
Tr(V σ̄ µ). (2.5)

Proper Poincar´e transformationsx′ = 30x + a can be rewritten in new terms as

X′ = U XU† + A, (2.6)

whereX = xµσµ, A = aµσµ, andU ∈ SL(2, C) (two different matrices±U cor-
respond to one matrix30). Elements ofM(3, 1) are given by pairs (A, U ) with
the composition law

(A2, U2)(A1, U1) = (U2A1U
†
2 + A2, U2U1). (2.7)

Space reflection takesx = (x0, xk) into x̄ = (x0,−xk), or in terms ofX = xµσµ,

P : X→ X̄ = x̄µσµ = xµσ̄µ.

Using the relationX̄ = σ2XTσ2 and the identityσ2Uσ2 = (U T )
−1

, we obtain

X̄′ = (U †)−1X̄U−1+ Ā (2.8)

as a consequence of (2.6). Thus,X̄ is transformed by means of the element
(Ā, (U †)−1) of M(3, 1). The relation

P : (A, U )→ (Ā, (U †)−1) (2.9)

defines an outer involutory automorphism ofM0(3, 1). In a similar manner, we
obtain automorphisms ofM(3, 1) that are generated byT, Ix,

T : (A, U )→ (−Ā, (U †)−1); (2.10)

Ix : (A, U )→ (−A, U ). (2.11)

The automorphisms that correspond toP andT exhaust all the outer involu-
tory automorphisms of the proper Poincar´e group in the following sense. Any outer
involutory automorphism can be presented as a composition of these two automor-
phisms and an inner automorphism of the group.7 In particular, the automorphism

6 We use two sets of 2× 2 matricesσµ = (σ0, σk) andσ̄µ = (σ0,−σk),

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.4)

7 The Poincar´e groupM(3, 1) is a semidirect product of the Lorentz groupSL(2, C) and the group
of four-dimensional translationsT(4). Any outer automorphism ofSL(2, C) is a product of invo-
lutory automorphismU → (U†)−1 and of an inner automorphism (Gel’fandet al., 1963). Outer
automorphisms of the translation group are generated by the dilatationsxµ → cxµ, c 6= 0, 1, and are
involutory only atc = −1. Outer automorphisms ofSL(2, C) andT(4) generate the following outer
automorphisms of the Poincar´e group: (A, U )→ (Ā, (U†)−1), (A, U )→ (cA, U ).
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of complex conjugation

C : (A, U )→ (A* , U* ). (2.12)

is the product of the outer automorphism (2.9) and the inner automorphism

(0, iσ2)(Ā, (U †)−1)(0,−iσ2) = (A* , U* ). (2.13)

One can see from (2.9) and (2.10) thatP andT generate the same automor-
phisms ofSL(2, C), namely,U → (U †)−1, whereasPT generates the identity
automorphism ofSL(2, C) and an outer automorphismA→−A of the transla-
tion group.

Thus, the discrete transformations in Minkowski space generate outer involu-
tory automorphisms of the proper Poincar´e group.8 In the next section we will see
how these automorphisms are related to discrete transformations in representation
spaces of the group.

3. AUTOMORPHISMS AND DISCRETE TRANSFORMATIONS
IN REPRESENTATION SPACES

The main object of our study here is a scalar field on the proper Poincar´e
group (Gitman and Shelepin, in press). That field is in fact a generating function
for all irreps of the group. First we recall briefly main points of the corresponding
technique. It is well known (Barut and Raczka, 1977; Vilenkin, 1968; Zhelobenko
and Schtern, 1983) that any irrep of a groupG is contained (up to the equivalence)
in a decomposition of a generalized regular representation. Consider the left gen-
eralized regular representationTL(g), which is defined in the space of functions
f (h), h ∈ G on the group as

TL(g) f (h) = f ′(h) = f (g−1h), g ∈ G. (3.1)

As a consequence of the relation (3.1), we can write

f ′(h′) = f (h), h′ = gh. (3.2)

Let G be the groupM(3, 1) and we use the parametrization by two 2× 2 matri-
ces (one Hermitian and another one fromSL(2, C)), which was described in the
previous section. At the same time, using such a parametrization, we choose the
following notations:

g↔ (A, U ), h↔ (X, Z), (3.3)

8 The reflectionsP, T can be considered also in terms of fundamental automorphisms of Clifford
algebras (Varlamov, Preprint math-ph/0009026).
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where A, X are 2× 2 Hermitian matrices andU, Z ∈ SL(2, C). The maph↔
(X, Z) creates the correspondence

h↔ (x, z, z), x = (xµ), z= (zα), z= (zα),
(3.4)

µ = 0, 1, 2, 3, α = 1, 2, z1z2− z2z1 = 1

by virtue of the relations

X = xµσµ, Z =
(

z1 z1

z2 z2

)
∈ SL(2, C). (3.5)

On the other hand, we have the correspondenceh′ ↔ (x′, z′, z′),

h′ = gh↔ (X′, Z′) = (A, U )(X, Z) = (U XU+ + A, U Z)↔ (x′, z′, z′),

x′µσµ = X′ = U XU+ + A⇒ x′µ = (30)µνx
ν + aµ, 30← U ∈ SL(2, C),

(3.6)(
z′1 z′1
z′2 z′2

)
= Z′ = U Z ⇒ z′α = Uα

βzβ , z′α = Uα
βzβ ,

(3.7)
U = (Uα

β
)
, z′1z′2− z′2z′1 = 1.

Then the relation (3.2) takes the form

f ′(x′, z′, z′) = f (x, z, z), (3.8)

x′µ = (30)µνx
ν + aµ, 30← U ∈ SL(2, C), (3.9)

z′α = Uα
βzβ , z′α = Uα

βzβ , z1z2− z2z1 = z′1z′2− z′2z′1 = 1. (3.10)

The relations (3.8)–(3.10) admit a remarkable interpretation. We may treat
x andx′ in these relations as position coordinates in Minkowski spaceM(3, 1)/
SL(2, C) (in different Lorentz reference frames) related by proper Poincar´e trans-
formations, and setsz, z and z′, z′ may be treated as spin coordinates in these
Lorentz frames. They are transformed according to Eq. (3.10). Carrying two-
dimensional spinor representation of the Lorentz group, the variablesz andz are
invariant under translations as one can expect for spin degrees of freedom. Thus,
we may treat setsx, z, z as points in a position-spin space with the transformation
law (3.9) and (3.10) under the change from one Lorentz reference frame to another.
In this case Eqs. (3.8)–(3.10) present the transformation law for scalar functions
on the position-spin space.

On the other hand, as we have seen, the set (x, z, z) is in one-to-one correspon-
dence with elements ofM(3, 1). Thus, the functionsf (x, z, z) are still functions
on this group. That is why we often call them scalar functions on the group,
remembering that the term “scalar” came from the above interpretation.
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We are reminded that different functions of such type correspond to different
representations of the groupM(3, 1). Thus, the problem of classification of irreps
of this group is reduced to the problem of a classification of the scalar functions on
position-spin space. It is natural to restrict ourselves by scalar functions that are
analytic both inz, zand inz* , z* (or, simply speaking, that are differentiable with re-
spect to these arguments). Further, such functions are denoted byf (x, z, z, z* , z* ) =
f (x, z), z= (z, z, z* , z* ). Since matricesU are unimodular, there exist invariant
antisymmetric tensorsεαβ = −εβα, εα̇β̇ = −εβ̇α̇, ε12 = ε1̇2̇ = 1, ε12 = ε1̇2̇ = −1.
Spinor indices are lowered and raised by the help of these tensors,

zα = εαβzβ , zα = εαβzβ , z* α̇ = εα̇β̇z* β̇ , z* α̇ = εα̇β̇z* β̇ .

The continuous transformations (3.10) do not mixzα andzα (and their com-
plex conjugatez* α̇, z* α̇). Therefore, scalar functions of the formf (x, z), f (x, z),
f (x, z* ), f (x, z* ) form four invariant (with respect toM(3, 1) transformations)
subspaces.

As was demonstrated by Gitman and Shelepin (in press), a standard spin
description in terms of multicomponent functions arises under the separation of
space and spin variables in the scalar functions. Below we recall how it works.

Sincez is invariant under translations, any functionφ(z) carries a represen-
tation of the Lorentz group. Let a functionf (h) = f (x, z) can be presented in the
form

f (x, z) = φn(z)ψn(x), (3.11)

whereφn(z) form a basis in the representation space of the Lorentz group. Thus,
we can decompose the functionsφn(z′) of transformed argumentz′ = gz in terms
of the functionsφn(z),

φn(z′) = φl (z)Ll
n(U ). (3.12)

Then the action of the Poincar´e group on a lineφ(z) = (φn(z)) is reduced to a mul-
tiplication by a matrixL(U ), whereU ∈ SL(2, C): φ(z′) = φ(z)L(U ). Comparing
decompositions of a functionf ′(x′, z′) = f (x, z) in terms of the transformed basis
φ(z′) and in terms of the initial basisφ(z),

f ′(x′, z′) = φ(z′)ψ ′(x′) = φ(z)L(U )ψ ′(x′) = φ(z)ψ(x),

whereψ(x) is a column with componentsψn(x), we obtain

ψ ′(x′) = L(U−1)ψ(x). (3.13)

This is the transformation law for tensor fields on Minkowski space. This law can
be treated as a representation of the Poincar´e group acting in a linear space of
tensor fields as followsT(g)ψ(x) = L(U−1)ψ(3−1(x − a)). According to (3.12)
and (3.13), the functionsφ(z) andψ(x) are transformed under contragradient
representations of the Lorentz group.
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Consider now the action of automorphisms in the space of the scalar functions.
The automorphismsg→ Ig I −1 (both inner and outer) generate the following left
generalized regular representation transformations of the Poincar´e group:

TL(g)→ I TL(g)I −1 ≡ TL(Ig I −1), (3.14)

f (h)→ I f (h) ≡ f (I h I −1). (3.15)

Equation (3.15) defines a corresponding mapping of the space of functionsf (h)
into itself.

Transformations of (A, U ) andX under the automorphisms that correspond
to space and time reflections are given by Eqs. (2.9)–(2.11). Notice that the compo-
sition law of the group is not changed under the automorphisms, therefore (X, Z)
is transformed just as (A, U ):

P : (X, Z)→ (X̄, (Z†)−1); (3.16)

T : (X, Z)→ (−X̄, (Z†)−1); (3.17)

Ix : (X, Z)→ (−X, Z). (3.18)

We see that the automorphisms in question correspond to a replacement of argu-
ments of scalar functionsf (h) according to Eqs. (3.16)–(3.18).

The replacement

Z
P,T−→ (Z†)−1, or

(
z1 z1

z2 z2

)
P,T−→

(
−z* 1̇ z* 1̇

−z* 2̇ z* 2̇

)
(3.19)

corresponds to space and time reflections. The transformation (3.19) maps func-
tions of zα into functions ofz* α̇. Thus, the space of the scalar functions contains
two invariant (with respect to proper Poincar´e group transformations and space-
time reflections) subspaces of functions of the formf (x, z, z* ) and f (x, z, z* ). We
denote these two subspaces byV+ andV− respectively.

The complex conjugationC affects both the form of scalar functions and
maximal set of coordinates on the Lorentz group,

C : T(g)→ CT(g)C−1 ≡ T
*

(g), f (h)→ C f (h) ≡ f* (h). (3.20)

Therefore, such a transformation takes subspacesV+ andV− into one another. The
transformation (3.20) of the fieldf (h) can be identified (Gitman and Shelepin,
in press) with the charge conjugation, which interchanges particle and antiparticle
fields, see below.

Studying involutory outer automorphisms of the proper Poincar´e group and
complex conjugation in the space of scalar functions on the group, we have defined
three independent discrete transformations (space reflectionP, time reflectionT ,
and charge conjugationC) in the representation space of the group. However,
there exist two more independent discrete transformations. Indeed, it is easy to see
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that transformation laws of arguments of functionsf (h) under Lorentz rotations
and under inner automorphisms are different,

(0, U )(X, Z) = (U XU†, U Z), (3.21)

(0, U )(X, Z)(0, U−1) = (U XU†, U ZU−1). (3.22)

In both cases coordinatesx are transformed similarly, thus the action of the inner
automorphisms (3.22) in the space of scalar functionsf (x) on Minkowski space is
reduced to Lorentz rotations. But for functionsf (x, z) of general form, the action
of inner automorphisms is more complicated.

Suppose an inner automorphism (3.22) corresponds to a discrete transforma-
tion, then the conditionsU2 = eiφ and detU = 1 take place. Diagonal matrices
with elementseiφ/2 and matrices of the form

U =
(

a b

c −a

)
, a2+ bc= −1, U2 = −1, (3.23)

satisfy these conditions. Since the composition of discrete transformations is a
discrete transformation as well, the square of product of two different matrices
of the form (3.23) must be (up to a phase factor) the identity matrix. The latter
requirement reduces (up to a sign) the set of all the matrices (3.23) to the only
three matrices

iσ1, iσ2, iσ3.

The matrixU = iσ2 presents an explicit realization of an inner involutory
automorphism

(X, Z)→ (X̄T , (ZT )−1). (3.24)

(Such a realization was already used above, see (2.13).) The automorphism (3.24)
change signs of two coordinatesx1, x3 and does not changex2 (that correspond to
the rotation by the angleπ in Minkowski space). It is more convenient to consider
a composition of the inner automorphism corresponding to the element (0,U ) and
the Lorentz rotation corresponding to the element (0,U−1), namely

(X, Z)→ (X, ZU−1). (3.25)

SelectingU = iσ2, we obtain the transformation (we denote it byIz),

Iz : (X, Z)→ (X, Z(−iσ2)),

(
z1 z1

z2 z2

)
→
(

z1 −z1

z2 −z2

)
. (3.26)

This transformation maps the spaces of functionsf (x, z, z* ) and f (x, z, z* ) into
one another. In contrast to the charge conjugation (3.20), the transformationIz

replaces arguments only.
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SelectingU = iσ3 we obtain the transformation

I3 : (X, Z)→ (X, Z(−iσ3)),

(
z1 z1

z2 z2

)
→
(
−i z1 i z1

−i z2 i z2

)
. (3.27)

The transformation associated withU = iσ1 is a product of the transformationsIz

and I3.
We see that whereas in Minkowski space there exist only two independent dis-

crete transformations corresponding to outer automorphisms of the Poincar´e group,
for the scalar field on the group there exist five independent discrete transforma-
tions corresponding to both outer and inner automorphisms. Charge conjugation
is associated with complex conjugation of the scalar functions, and another four
transformations are associated with the following replacements of arguments of
the scalar functions:

x0 x zα z* α̇ zα z* α̇
P x0 −x −z* α̇ zα z* α̇ −zα

Ix −x0 −x zα z* α̇ zα z* α̇
Iz x0 x zα z* α̇ −zα −z* α̇

I3 x0 x −i zα i z* α̇ i zα −i z* α̇

(3.28)

4. DISCRETE TRANSFORMATIONS OF SPIN-TENSOR FIELDS

Decomposing the scalar fields in powers ofz = (z, z, z* , z* ), we obtain all
conventional spin-tensor fields. The latter are coefficient functions in such decom-
positions and depend on coordinatesx on Minkowski space. Thus, we can derive
the action of all the discrete transformations on spin-tensor fields.

There is only one type of spinors in nonrelativistic theory (all spinors are
subjected to the same transformation law under rotations), and there are two types
of spinors (dotted and undotted, which are subjected to different transformation
laws under boosts) in relativistic theory. Underlined and nonunderlinedz-spinors
have different transformation laws under discrete transformations. Thus, taking
into account discrete transformations, we should consider four types of spinors:
dotted and undotted (or left and right) and underlined and nonunderlined (which
allow one to differ particles and antiparticles). In contrast to spin-tensor fields,
for the fields on the Poincar´e group the use of different types of indices is not
necessary, because these indices only duplicate the sign of complex conjugation
and sign of underline of the coordinates on the Lorentz group. Below, instead of
using underlined and nonunderlined indices, we stipulate what kind of objects
(particle or antiparticle) is described by the spin-tensor field under consideration.
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As a simple example, we consider first linear inz functions, they correspond
to spin 1/2 particles. Suppose a particle is described by a functionf (x, z, z* ) ∈ V+,

f (x, z, z* ) = χα(x)zα + ψ* α̇(x)z* α̇ = ZD9(x), ZD = (zαz* α̇),
(4.1)

9(x) =
(
χα(x)

ψ
* α̇(x)

)
,

then an antiparticle is described by a functionf (x, z, z* ) ∈ V−,

f (x, z, z* ) = χα(x)zα + ψ* α̇(x)z* α̇ = ZD9(x), ZD = (zαz* α̇), (4.2)

whereZD andZD (and therefore bispinor9(x) in both equations) have the same
transformation law under the proper Poincar´e groupM(3, 1). Using Eqs. (3.16)
and (3.19), we get for space reflection

P : ZD9(x)→ ZD9
(s)(x̄), 9(s)(x̄) = −

(
ψ
* α̇(x̄)

χα(x̄)

)
= γ 09(x̄).

For the time reflection, we get9 (s)(x̄) = γ 09(−x̄). The charge conjugation cor-
responds to the complex conjugation in the space of the scalar functions. Thus,
according to (3.20), we write

C : ZD9(x)→ Z
*

D9
*

(x) = ZD9
(c)(x), 9(c)(x) = −

(
ψα(x)

χ* α̇(x)

)
= i γ 29

*
(x).

Finally, using Eqs. (3.26) and (3.27), we obtain the action of the discrete transfor-
mationsIz and I3,

Iz : ZD9(x)→ ZDγ
59(x),

I3 : ZD9(x)→−ZDi9(x).

Both transformationsIz andC interchange particles and antiparticles. The trans-
formation I3 is reduced to a multiplication by a phase factor only.

In order to find transformation laws for general spin-tensor fields we need an
explicit form for bases of the Lorentz group irreps. Consider the monomial basis

(z1)
a
(z2)

b
(z* 1)c(z* 2)d

in the space of functionsφ(z, z* ). The numbersj1 = (a+ b)/2 and j2 = (c+ d)/2
are not changed under the action of the Lorentz group generators (A1). Hence the
space of the irrep (j1, j2) is the space of homogeneous functions of two pairs of
complex variables of power (2j1, 2 j2). We denote these functions asϕ j1 j2(z).

For finite-dimensional nonunitary irreps ofSL(2, C), the numbersa, b, c, d
are integer nonnegative, therefore,j1, j2 are integer or half-integer nonnegative.
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Consider polynomialsfs(x, z) of degree 2s= 2 j1+ 2 j2 in z, z* ,

fs(x, z, z* ) =
∑

j1+ j2=s

∑
m1,m2

ψ
m1m2
j1 j2

(x)ϕm1m2
j1 j2

(z, z* ). (4.3)

The functions

ϕ
m1m2
j1 j2

(z, z* ) = N
1
2 (z1) j1+m1(z2) j1−m2(z* 1̇) j2+m2(z* 2̇) j2−m2, (4.4)

N = (2s)![( j1+m1)!( j1−m1)!( j2+m2)!( j2−m2)!]−1 (4.5)

form a basis of an irrep of the Lorentz group. Such a basis corresponds to a chiral
representation. On the other hand, we can write a decomposition for the same func-
tions in terms of symmetric spin-tensorsψα1···α2 j1

β̇1···β̇2 j2 (x) = ψα(1···α2 j1)
β̇(1···β̇2 j2) (x).

Namely,

fs(x, z) =
∑

j1+ j2=s

f j1 j2(x, z),

(4.6)
f j1 j2(x, z) = ψα1···α2 j1

β̇1···β̇2 j2 (x)zα1 · · · zα2 j1 z* β̇1
· · · z* β̇2 j2

.

Comparing the decompositions (4.3) and (4.6), we obtain the relation

N
1
2ψ

m1m2
j1 j2

(x) = ψ

j2+m2︷ ︸︸ ︷
1̇ · · · 1̇
1 · · ·1︸ ︷︷ ︸
j1+m1

j2−m2︷ ︸︸ ︷
2̇ · · · 2̇
2 · · ·2︸ ︷︷ ︸
j1−m1

(x). (4.7)

Consider now the action of the discrete transformations on the functionsψ(x).
According to (3.16) and (3.19), the automorphism that is related toP allows us to
write (see (4.3) and (4.4))

f (x, z, z* )
P→ f (x̄,−z* ,−z) = ϕ(−z* ,−z)ψ(x̄) = ϕ(z, z* )ψ (s)(x̄). (4.8)

It follows from (4.4) that

ϕ
m1m2
j1 j2

(−z* ,−z) = (−1)2( j1+ j2)ϕ
m2m1
j2 j1

(z, z* ), (4.9)

therefore we get

ψ (s)m1m2
j1 j2

(x̄) = (−1)2( j1+ j2)ψ
m2m1
j2 j1

(x̄).

Finally, we getP transformation of spin-tensor fields

ψα1···α2 j1

β̇1···β̇2 j2 (x)
P→ (−1)2( j1+ j2)ψβ1···β2 j2

α̇1··· α̇2 j1 (x̄). (4.10)

The charge conjugationC maps functionsf (x, z, z* ) ∈ V+ into functions
f (x, z, z* ) ∈ V−:

f (x, z, z* )
C→ f* (x, z, z* ) = ϕ* (z, z* )ψ∗(x) = ϕ(z, z* )ψ (c)(x). (4.11)
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Using again (4.4) to write

ϕ
* m1m2

j1 j2
(z, z* ) = ϕm1m2

j1 j2
(z* , z) = (−1)( j1−m1)+( j2+m2)ϕ

m2m1
j2 j1

(z, z* ), (4.12)

we obtain

ψ (c)m1m2
j1 j2

(x) = (−1)( j1−m1)+( j2+m2)ψ
* m2m1

j2 j1
(x).

ThusC transformation of spin-tensor fields has the form

ψα1···α2 j1

β̇1···β̇2 j2 (x)
C→ ψ

* β1···β2 j2 α̇1··· α̇2 j1
(x)

= (−1)( j1−m1)+( j2+m2)ψ
*
β1···β2 j2

α̇1··· α̇2 j1 (x). (4.13)

The action of discrete transformations on functionsf (x, z, z* ) ∈ V−, which
correspond to antiparticle fields, can be obtained a similar manner. Below we
summarize transformation laws both for scalar fields on the Poincar´e group and
for spin-tensors fields in Minkowski space in two tables.

Besides of the five independent transformationsP, T, C, Iz, I3, we include
in these tables two operations related to the change of time sign (Wigner time
reversalTw and Schwinger time reversalTsch), the inversionIx (which affects only
space-time coordinatesxµ), andPCTw-transformation.

It is easy to see thatC2 = P2 = T2 = 1. OperatorsIz, I3 correspond to prod-
ucts of involutory inner automorphisms and the rotation by the angleπ (see (3.24)).
HenceI 2

z = I 2
3 = T2

w = R2π , whereR2π is the operator of rotation by 2π . The
latter operation changes signs of spin variables,f (x, z, z* )

R2π→ f (x,−z,−z* ) and
corresponds to the multiplication by the phase factor (−1)2( j1+ j2) only.

In the general case the transformation laws for particle and antiparticle spin-
tensor fields are distinguished by signs (for space reflection this fact was pointed
out in the literature, see, for example, Sachs, 1987). This signs play an important
role, because their change leads to noncommutativity of discrete transformations.

There are two different transformationsC andIz, which interchange particle
and antiparticle fields. The operatorIz is a spin part ofPCTw-transformation.
Indeed, the relationPCTw = Ix Iz means thatPCTw-transformation is factorized
in inversionIx, affecting only space-time coordinatesxµ, and inIz-transformation,
affecting only spin coordiantesz.

Consider now scalar fields that are eigenfunctions forC. Such fields describe
neutral particles and obey the conditionC f (h) = f* (h) = eiφ f (h). Multiplying
these fields by the phase factoreiφ/2, we transform them to real fields obeying
the conditionC f (h) = f (h). The charge conjugationC mapsz, z into a com-
plex conjugate pair. Thus, there are two invariant (with respect toC) subspaces
of the scalar functions, namely, spaces of real-valued functionsf (x, z, z* ) and
f (x, z, z* ). We denote such spaces byVz andVz, respectively. They are mapped into
one another under the space reflection,Vz

P↔Vz. Eigenfunctions ofC that are linear
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in z, z* (with the eigenvalue 1) have the form

f (x, z, z* ) = ψα(x)zα − ψ* α̇(x)z* α̇ = ZM9M(x),
(4.14)

ZM = (zαz* α̇), 9M(x) =
(
ψα(x)

−ψ* α̇(x)

)
,

where9M(x) is a Majorana spinor,9
*

M(x) = i γ 29M(x). The space reflection maps
functions fromVz into functions fromVz,

P : ZM9M(x)→ ZM9
(s)
M (x̄), ZM(zαz* α̇),

(4.15)

9
(s)
M (x̄) = −

(
ψ
* α̇(x̄)

ψα(x̄)

)
= γ 0γ 59M(x̄) = i γ 0γ 5γ 29

*
M(x̄).

Therefore, the spacesVz and Vz (in contrast to the spacesV+ and V−) do not
contain eigenfunctions ofP (i.e., states with definite parity). According to (3.26)
and (3.27), we obtain

Iz : ZM9(x)→ ZM9(x), (4.16)

I3 : ZM9(x)→−ZM i γ 59(x). (4.17)

Thus, there are four nontrivial independent discrete transformations for the fields
under consideration. These transformations for bispinors9(x) and9M(x) are
performed by matrices from the same set. However, one and the same discrete
symmetry operation induces different operations with bispinors9(x) and9M(x).

The PCTw-transformation maps the spaces of functionsf (x, z, z) and
f (x, z* , z* ) into themselves. The eigenfunctions ofPCTw from these spaces de-
scribe, in particular, “physical” Majorana particles, which are defined asPCTw-
self-conjugate particles with spin 1/2 (Kayser and Goldhaber, 1983).

5. DISCRETE TRANSFORMATIONS OF OPERATORS

First consider the action of the discrete transformations on generators of the
Poincaré group. Such generators in the left generalized regular representation have
the form

p̂µ = −i ∂/∂xµ, Ĵµν = L̂µν + Ŝµν , (5.1)

where L̂µν = i (xµ∂ν − xν∂µ) are orbital momentum operators andŜµν are spin
operators. The latter operators depend onz and ∂/∂z, an explicit form of the
operators is presented in the Appendix. The generators (5.1) obey the commutation
relations

[ p̂µ, p̂ν ] = 0, [Ĵµν , p̂ρ ] = i (ηνρ p̂µ − ηµρ p̂ν),
(5.2)

[ Ĵµν , Ĵρσ ] = iηνρ Ĵµσ − iηµρ Ĵνσ − iηνσ Ĵµρ + iηµσ Ĵνρ.
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Fields on the Poincar´e group depend on ten independent variables. For the
classification of these fields we can use a maximal set of commuting operators.
As such a set we chose both the left generators (5.1) and generators of the right
generalized regular representationTR(g),

TR(g) f (x, z) = f (xg, zg), xg↔ X + Z AZ†, zg↔ ZU. (5.3)

Generators of the right generalized regular representation are labelled by R above.
As a consequence of (5.3) we obtain

p̂R
µσ̄

µ = −Z−1 p̂ν σ̄
ν(Z†)−1, Ĵ

R
µν = Ŝ

R
µν. (5.4)

OperatorsŜµν and Ŝ
R
µν from (5.1) and (5.4) are the left and right generators

of SL(2, C), they do not depend onx. All the right generators (5.4) commute
with all the left generators (5.1) and obey the same commutation relations (5.2).
Below for spin projection operators we use three-dimensional vector notation

Ŝk = 1
2εi jk Ŝ

i j
, B̂k = Ŝ0k. An explicit form of the spin operators is given in the

Appendix by Eqs. (A1)–(A3).
According to harmonic analysis theory of Lie groups (Barut and Raczka,

1977; Zhelobenko and Schtern, 1983), a maximal set of commuting operators
includes both Casimir operators and two sets of left and right generators (both sets
in equal number). The total number of the commuting operators is equal to the
number of group parameters. Nonequivalent representations (in a decomposition
of the left GRR) are distinguished by eigenvalues of Casimir operators, equivalent
representations are distinguished by eigenvalues of right generators, and states
within an irrep are distinguished by eigenvalues of left generators.

In the general case, the physical meaning of right generators is not so trans-
parent as of left ones. Nevertheless, right generators ofSO(3) in the nonrelativistic
rotator theory are interpreted as angular momentum operators in a rotating body-
fixed reference frame (Biedenharn and Louck, 1981; Landau and Lifschitz, 1977;
Wigner, 1959). Since the right transformations commute with the left ones, they
define quantum numbers, which do not depend on the choice of the laboratory
reference frame.

The right generatorŝS
R
3 and B̂

R
3 of the Poincar´e group can be used to distin-

guish functions from the subspacesV+, V− andVz, Vz. Polynomials of power 2s
belonging toV+ andV− are eigenfunctions of the operatorŜ

R
3 with eigenvalues∓s

respectively. Polynomials of power 2s belonging toVz andVz are eigenfunctions
of the operatori B̂

R
3 with eigenvalues∓s respectively.

The explicit form of the generators (see (5.1), (5.4) and (A1), (A2)) allows
us to find their transformation properties under involutory automorphisms, and,
thus, under discrete transformations. The transformationsP, T correspond to outer
automorphisms of the algebra. Therefore, left and right generators are transformed
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similarly underP andT , in particular,

p̂µ→∓(−1)δ0µ p̂µ, Ŝ→ Ŝ, B̂→−B̂,

where the upper sign corresponds toP. Obviously, spatial and boost components
of the total and orbital angular momenta are transformed asŜ andB̂.

The complex conjugationC changes signs of all the generators. The corre-
sponding commutation relations are also changed under the complex conjugation;
they follow from (5.2) if to replace therei by−i .

According to (3.25)–(3.27) the transformationsIz, I3, which are connected
with inner automorphisms, are defined as right finite transformations of the proper
Poincaré group.9 They do not affect left generators since all the right transforma-
tions commute with all the left ones. Thus,Iz, I3 induce automorphisms of the
right generators algebra:Iz changes signs of the first and the third components of
ŜR and B̂R, and I3 changes signs of the first and the second components ofŜR

andB̂R.
An intrinsic parity of a massive particle is defined as an eigenvalue of the

operatorP in the rest frame,P f (h) = η f (h), η = ±1. Since the operatorP com-
mutes withT, C, Iz, the intrinsic parity is not changed under the corresponding
discrete transformations.

Using information from Tables I and II and explicit form of the corresponding
operators presented in the Appendix, one can find transformation properties of
physical quantities under discrete transformations. Such properties are listed in
Table III. The intrinsic parityη and the sign ofp0 label irreps of the improper
Poincaré group. The latter group includes the proper Poincar´e group and space
reflection. As well as Table III includes the left generatorsp̂µ, the spin partŝS, B̂
of the left Lorentz generators, and two right Lorentz generators.

We also include in the table a current four-vectorjµ for the first-order equation
(B2) (the Dirac and Duffin–Kemmer equations are the particular cases of this
equation fors= 1/2 ands= 1 respectively). In the space of scalar functions
on the group this current is presented by the opertors0̂µ, see (B3). Particle and
antiparticle fields are distinguished by the sign of the charge, that is, by the sign ofj0
component of the current. As one can see from the table, the sign of the eigenvalue
SR

3 of right generator can be used to distinguish particles and antiparticles, since this
sign and the sign ofj0 are transformed similarly under discrete transformations.
As is shown below, the sign of the mass term in the Eq. (B2) is changed as the sign
of the productp0SR

3 under discrete transformations, see the next to last column of
Table III.

9 Any inner automorphismh→ g−1hg is a product of lefth→ g−1h and righth→ hg group trans-
formations. In other words, any inner automorphism of the proper Poincar´e group can be reduced to
a right transformation of this group by means of a corresponding choice of the reference frame. That
gives us one more reason to study the right transformations.
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Table I. Discrete Transformations for Particle Fields

f (x, z, z* ) ψα1···α2 j1

β̇1···β̇2 j2 (x) 9(x)

P f (x̄,−z* ,−z) (−1)2( j1+ j2)ψβ1···β2 j2

α̇1··· α̇2 j1 (x̄) γ 09(x̄)

T f (−x̄,−z* ,−z) (−1)2( j1+ j2)ψβ1···β2 j2

α̇1··· α̇2 j1 (−x̄) γ 09(−x̄)

Ix = PT f(−x, z, z* ) ψα1···α2 j1

β̇1···β̇2 j2 (−x) 9(−x)

C f
*
(x, z, z* ) ψ

* β1···β2 j2 α̇1··· α̇2 j1
(x) i γ 29

* (x)

Tsch= CT f
*
(−x̄,−z* ,−z) (−1)2( j1+ j2)ψ

* α1···α2 j1
β̇1···β̇2 j2

(−x̄) i γ 0γ 29
* (−x̄)

Iz f (x, z,−z* ) (−1)2 j2ψα1···α2 j1

β̇1···β̇2 j2 (x) γ 59(x)

Tw = IzCT f
*
(−x̄, z* ,−z) (−1)2 j2ψ

* α1···α2 j1
β̇1···β̇2 j2

(−x̄) −i γ 5γ 0γ 29
* (−x̄)

PCTw = IzIx f (−x, z,−z* ) (−1)2 j2ψα1···α2 j1

β̇1···β̇2 j2 (−x) γ 59(−x)

I3 f (x,−i z,−i z* ) (−i )2( j1+ j2)ψα1···α2 j1

β̇1···β̇2 j2 (x) −i9(x)

The last column (L–R) of the table describes the passage between two types
of spinors (leftz* α̇, z* α̇ and rightzα, zα) labelled by dotted and undotted indices. The
sign− corresponds to a transformation interchanging dotted and undotted indices;
the sign+ corrresponds to a transformation that does not change this indices. Let
we define the chirality as a difference between the number of dotted and undotted
indices, then the last column of the table corresponds to the sign of the chirality. In

Table II. Discrete Transformations for Antiparticle Fields

f (x, z, z* ) ψα1···α2 j1

β̇1···β̇2 j2 (x) 9(x)

P f (x̄, z* , z) ψβ1···β2 j2

α̇1··· α̇2 j1 (x̄) −γ 09(x̄)

T f (x̄, z* , z) ψβ1···β2 j2

α̇1··· α̇2 j1 (−x̄) −γ 09(−x̄)

Ix = PT f(−x, z, z* ) ψα1···α2 j1

β̇1···β̇2 j2 (−x) 9(−x)

C f
*
(x, z, z* ) ψ

* β1···β2 j2 α̇1··· α̇2 j1
(x) i γ 29

* (x)

Tsch= CT f
*
(−x̄, z* , z) ψ

* α1···α2 j1
β̇1···β̇2 j2

(−x̄) −i γ 0γ 29
* (−x̄)

Iz f (x,−z, z* ) (−1)2 j1ψα1···α2 j1

β̇1···β̇2 j2 (x) −γ 59(x)

Tw = IzCT f
*
(−x̄, z* ,−z) (−1)2 j2ψ

* α1···α2 j1
β̇1···β̇2 j2

(−x̄) −i γ 5γ 0γ 29
* (−x̄)

PCTw = IzIx f (−x,−z, z* ) (−1)2 j1ψα1···α2 j1

β̇1···β̇2 j2 (−x) −γ 59(−x)

I3 f (x, i z, i z* ) −i 2( j1+ j2)ψα1···α2 j1

β̇1···β̇2 j2 (x) i9(x)
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Table III. Discrete Transformation Action on Signs of Physical Quantities

η p0 p S B SR
3 BR

3 j a
0 j a p0SR

3 L–R

P + + − + − + − + − + −
T + − + + − + − + − − −
Ix = PT + − − + + + + + + − +
C + − − − − − − − − + −
CP + − + − + − + − + + +
Tsch= CT + + − − + − + − + − +
PCT = IxC + + + − − − − − − − −
Iz + + + + + − − − − − +
Tw = IzCT + + − − + + − + − + +
PTw = IzIxC + + + − − + + + + + −
PCTw = IzIx + − − + + − − − − + +

aFor the states described by the first-order equation (B2).

the space of scalar functions on the group, the chirality is described by the operator
0̂5, see (B5).

The time reflectionT maps positive energy states into negative energy ones.
On the other hand, the time reversal is defined usually by the relationx→−x̄ with
supplementary condition of conservation of the energy sign. Obviously, the product
of charge conjugation and time reflectionCT, which we denote byTsch, obeys this
condition. The transformationTsch was introduced by Schwinger (1951) (see also
Umezavaet al., 1954). This transformation interchanges particle and antiparticle
fields (fields with opposite signs ofj0 component).

For the first time, the time reversalTw was considered by Wigner (1932).
Wigner time reversal does not change the sign ofj0. Relating different states of the
same particle, this transformation is an analog of the time reversal in nonrelativistic
quantum mechanics. Changing signs of the vectorsp, S, j , Wigner time reversal
corresponds to a reversal of the motion direction. Notice that sometimes the term
“time reversal” is used (instead of the term “time reflection”) for transformations
changing the sign of energy.

The transformationIz is a finite transformation from the right generalized
regular representation of the proper Poincar´e group, see (3.25) and (3.27). This
transformation does not change signs of the left generators (since all the right
transformations commute with the left ones) but changes signs of the current
vector and of some right generators. Hence, the left generators are transformed
similarly underTsch andTw = IzTsch. The transformationI3 (as it was mentioned
above) changes the sign of the first and second components of the vectorsSR

and BR and does not change signs of all the physical quantities listed in the
Table III.
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6. EXTENSION OF THE PROPER POINCARÉ GROUP IN
REPRESENTATION SPACES BY DISCRETE TRANSFORMATIONS

Since we have a clear definition of discrete transformations in represen-
tation spaces (or equivalently in the space of scalar functions on the group),
we can consider an extension of the proper Poincar´e group by means of the
discrete transformations (further we call such a group the extended Poincar´e
group). Irreps of the extended Poincar´e group can differ from ones of the proper
Poincaré group, because discrete transformations can unite nonequivalent irreps
or distinguish equivalent irreps of the proper Poincar´e group. Indeed, different
fields with identical transformation rules under the left transformations carry
equivalent subrepresentations of the left generalized regular representation (3.1)
even if these fields have different transformation rules under the right transfor-
mations (5.3). The functions carrying equivalent representations of the proper
Poincaré group can be transformed differently under the discrete transformations.
Therefore, these functions carry nonequivalent representations of the extended
Poincaré group.

The reflectionI and the identity operator form a finite groupZ2, which
consists of two elements. The operatorI distinguishes states having different
“charges” and “charge parities.” States with opposite “charges” (which we denote
by ψ+ andψ−) are interchanged by the action ofI : ψ+

I↔ ψ−. The statesψ+ ±
ψ− with definite “charge parity” are eigenfunctions ofI with the eigenvalues
±1 respectively. These states form a basis of one-dimensional irreps ofZ2. The
operators (1± I )/2 are projection operators on states with definite “charge parity.”

Operators of discrete transformations commute between each other and com-
mute (sign “+” in Table III) or anticommute (sign “−” in Table III) with generators
of the proper Poincar´e group. The latter means that discrete transformation can
only interchange eigenfunctions of the generator with opposite eigenvalues.

Below one can find a table, which lists parameters labelling finite-component
(with respect to spin) irreps of the proper and improper (i.e., extended by the space
reflection) Poincar´e groups.

Here the massm > 0, the spins= 0, 1/2, 1,. . . , the intrinsic parityη = ±1,
and the helicityλ = 0,±1/2,±1, . . . . The massm and sign ofp0 label orbits in
the momentum space (the upper or lower sheet of hyperboloid or cone),s and
λ label irreps of the little groupsSO(3) andSO(2), s, η and |λ|, η label irreps
of the little groupsO(3) andO(2), respectively (see Mackey, 1968; Tung, 1985,
for details). The mass and the spin can by also defined as eigenvalues of Casimir
operators:

p̂2 f (x, z) = m2 f (x, z), Ŵ2 f (x, z) = −m2s(s+ 1) f (x, z), (6.1)

whereŴµ is Lubanski–Pauli four-vector, andz= (z, z, z* , z* ) are coordinates on
the Lorentz group.
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To construct irreps of the extended Poincar´e group, we consider the action
of four independent discrete transformationsP, Ix, Iz, C in the space of the scalar
functions on the group.

1. Irreps of the extended by space reflectionP Poincaré group (improper
Poincaré group) can be classified with the help of the little group method.
The space reflection distinguishes states with different intrinsic partiesη

and states with different (left or right) charges, or states with different
chirality. In the space of scalar functions, the chirality operator0̂5 is given
by Eq. (B5). Fields with zero chirality do not change under the space
reflection.

2. The inversionIx affects space-time coordinatesx only. It couples two
irreps of the proper (or improper) Poincar´e group characterized by sign
p0 = ±1 into one representation of the extended group. Eigenvectors ofIx

are states with definite “energy parity.” However, since the sign of energy
p0 is already used to label irreps of the proper group, this extension does
not creates new characteristics.

3. As was mentioned earlier, the operatorIz is a spin part of thePCTw = Ix Iz

transformation and affects only spin coordinatesz. Since Iz commutes
with all the left generators and with space reflectionP, Iz cannot change
parameters labelling irreps of the proper or improper Poincar´e group.Iz in-

terchanges states with opposite eigenvalues ofŜ
R
3 ; a charge parityηc = ±1

arises as eigenvalue ofIz. Therefore, irreps of the extended byIz Poincaré
group are labelled by charge parityηc in addition to characteristics of
Table IV. Furhter, taking into account the close relation betweenIz and
PCTw, we call the corresponding characteristics asPCTw-charge and
PCTw-parity.

4. The charge conjugationC changes signs of all the generators. Thus, any
extension that includesC has to be considered separately. Notice thatC
does not changeη andηc and similar toIz changes sign of the chargeŜ

R
3 .

Whenever the proper Poincar´e group is extended byP, T, Iz, then addi-
tional extension byC can be replaced by Wigner time reversalTw = IzCT
as fourth independent discrete transformation. The latter transformation

Table IV. Parameters Labelling Irreps of the Proper and Improper Poincar´e Groups

Proper Poincar´e group Improper Poincar´e group

Massive case m, sign p0, s m, sign p0, s, η
Massless case signp0, λ sign p0, |λ|, ηa

aFor λ 6= 0 massless irreps withy = ±1 are equivalent (Shaw and Lever, 1974;
Tung, 1985).
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corresponds to a reversal of particle motion direction and does not change
P-charge (chirality) andIz(C PTw)-charge.

Thus, the irreps of the extended Poincar´e group have two supplementary
characteristics with respect to irreps of the proper group: the intrinsic parityη

andPCTw-parityηc, which are associated withP-charge (chirality) andPCTw-
charge (the latter one distinguishes particles and antiparticles). In the space of
functions on the group these charges are defined as eigenvalues of the operators
0̂5 and Ŝ

R
3 , respectively. Since for particles with half-integer spins these charges

are half-integer, such particles can’t have zero chirality or zeroPCTw-charge (in
other words, they can’t be pure neutral with respect to the discrete transformations
under consideration).

Below we consider two types of extended Poincar´e group representations.
Irreps of the extended Poincar´e group have definite intrinsic parityη andPCTw-
charge parityηc. Fields with definite intrinsic parityη or with definite charge
parityηc (e.g., “physical” Majorana field) are described by eigenfunctions ofP or
Iz, respectively. Representations with definiteP-charge (chirality) or with definite
PCTw-charge are reducible representations of the extended Poincar´e group. Fields
with definiteP-charge (e.g., Weyl field) or with definitePCTw-charge (e.g., Dirac
field) are mapped into fields with opposite charges under the corresponding discrete
transformations.

7. DISCRETE SYMMETRIES OF RELATIVISTIC WAVE
EQUATIONS. MASSIVE CASE

Here we explicitly construct massive fields on the Poincar´e group and analyze
their characteristics associated with the discrete transformations. On this base, us-
ing various sets of commuting operators on the Poincar´e group, we give a compact
group-theoretical derivation of basic relativistic wave equations and consider their
discrete symmetries. In particular, this allows one to present a group-theoretical
interpretation of two possible signs of mass term in first order equations. Then
we classify solutions of higher spin relativistic wave equations with respect to the
extended Poincar´e group.

Consider eigenfunctions of the operatorsp̂µ (plane waves). Form 6= 0, there
exists a rest frame, wherex-dependence is reduced to the factore±imx0

. Linear in
z functions describe spin 1/2 particles. For a fixed massm, there are 16 linearly
independent functions of such kind,

V+ V−

L : e±imx0
zα e±imx0

zα (7.1)

R : e±imx0
z* α̇ e±imx0

z* α̇
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These functions can be classified (labelled) by means of left generators of the
Poincaré group and operators of the discrete transformationsP, C. The eigenvalues
of the left generatorŝJ3 (in the rest frame under considerationĴ3 = Ŝ3) and p̂0 are
the spin projection (forα, α̇ = 1 andα, α̇ = 2, we haves3 = 1/2 respectively) and
the energyp0. The sign ofp0, along with the massm and the spins, characterizes
nonequivalent irreps of the proper Poincar´e group. The operatorIx interchanges
states with opposite signs ofp0; the operatorP interchangesL- and R-states
(states with opposite chiralities); and the operatorsC and Iz interchange particle
and antiparticle states. The latter states belong to the spacesV+ andV− respectively.
In contrast to the operatorC, the operatorIz does not change signs of energy and
chirality.

However, the states (7.1) with definite chirality are transformed under re-
ducible representation of the improper Poincar´e group. Irreps of the latter group
are characterized by the intrinsic parityη. In the rest frame, states with definiteη
are eigenfunctions of the operatorP, P f (x, z) = η f (x, z),

V+ V−
η = −1 : e±imx0

(zα + z* α̇) e±imx0
(zα − z* α̇)

η = 1 : e±imx0
(zα − z* α̇) e±imx0

(zα + z* α̇)

(7.2)

As above, the operatorsC and Iz interchange functions from the spacesV+ and
V−. On the other hand, states with different intrinsic parityη = ±1 (unlike
states with different chirality) are not interchanged by operators of discrete
transformations.

Both the states (7.1) and (7.2) are eigenvectors of the Casimir operatorsp̂2

and Ŵ2 with the eigenvaluesm2 and−(3/4)m2. But the only states (7.2) are
transformed under irrep of the improper Poincar´e group. Besides, the states (7.2)
(unlike the states (7.1)) are solutions of the equations

( p̂µ0̂
µ ±ms) f (x, z, z* ) = 0, (p̂µ0̂

µ ∓ms) f (x, z, z* ) = 0. (7.3)

Heres= 1/2, the upper sign corresponds toη sign p0 = 1 and lower sign corre-
sponds toη sign p0 = −1. The operator̂pµ0̂

µ (an explicit form of0̂µ is given
by (B3)) is not affected by the space inversion and the charge conjugation. The
spacesV+ andV− are also invariant under the space reflection, however, they are
interchanged under the charge conjugation.

Considering the action of the discrete transformations onj0 component of free
equation current, we have seen that whenever particles are described by functions
from V+, then antiparticles are described by functions fromV−. This turns es-
pecially clear when we include an interaction with an external electromagnetic
field. Acting by the charge conjugationC (which acts as the operator of complex
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conjugation on scalar functions on the group) on the equation

(( p̂µ − eAµ(x))0̂µ ±ms) f (x, z, z* ) = 0, f (x, z, z* ) ∈ V+, (7.4)

we see that functionsf* (x, z, z* ) ∈ V− obey the same equation with opposite charge
sign:

(( p̂µ + eAµ(x))0̂µ ±ms) f* (x, z, z* ) = 0, f* (x, z, z* ) ∈ V−. (7.5)

Substituting the functionsf (x, z, z* ) = ZD9(x) and f* (x, z, z* ) = ZD9
(c)(x)

into Eqs. (7.4) and (7.5) (see also (4.1) and (4.2)), we obtain two Dirac equations
for charge-conjugate bispinors9(x) and9 (c)(x),

(( p̂µ − eAµ(x))γ µ ±m)9(x) = 0, ((p̂µ + eAµ(x))γ µ ±m)9 (c)(x) = 0.

Thus we have to use the different scalar functions on the group to describe
particles and antiparticles and hence two Dirac equations for both signs of charge,
respectively. That matches completely with results of the consideration by Gavrilov
and Gitman (2000), where it was shown that in the course of the consistent quan-
tization of a classical model of spinning particle namely such (charge symmetric)
quantum mechanics appears. Such a mechanics is completely equivalent to one-
particle sector of the corresponding quantum field theory.

In the next section we continue to consider spin-1/2 case and give an exact
group-theoretical formulation of conditions that lead to the Dirac equation.

In the general case for the classification of functions corresponding to higher
spins one has to use a maximal set of the commuting operators on the group, for
example,

p̂µ, Ŵ2, p̂Ŝ, Ŝ2− B̂2, ŜB̂, ŜR
3 , B̂R

3 . (7.6)

This set includes functions of left and right generators. In the rest framep̂Ŝ= 0,
thus the maximal set can be obtained from (7.6) by changingp̂Ŝ to Ŝ3. Functions
from the spacesV+ andV− depend on eight real parameters, therefore, one can
consider only eight operators. As such operators we chose (the problem of con-
structing maximal sets of commuting operators in representation spaces of the
Poincaré group was discussed by Barut and Raczka (1977), Gitman and Shelepin
(2001), and Hai (1969))

p̂µ, Ŵ2, p̂Ŝ (Ŝ3 in the rest frame),̂pµ0̂
µ, ŜR

3 . (7.7)

Consider eigenvalue problem for the operators (7.7). For functions from
the spacesV+ and V− one can show that if an eigenvalue ofp̂µ0̂

µ is equal to
±ms, where 2s is the power of polynomial, then the eigenvalue of the operator
Ŵ2 is also fixed and corresponds to the spins (Gitman and Shelepin, 2001).
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Thus, the equations

p̂2 f (x, z) = m2 f (x, z), p̂µ0̂
µ f (x, z) = ±ms f(x, z),

(7.8)
ŜR

3 f (x, z) = ±s f(x, z),

pick out states with definite mass and spin.
Depending on the choice of the functional space and of the sign of the mass

term, the second equation (7.8) can be written in one of the four forms:

V+ V−

( p̂µ0̂
µ +ms) f (x, z, z* ) = 0, (p̂µ0̂

µ −ms) f (x, z, z* ) = 0, (7.9)

( p̂µ0̂
µ −ms) f (x, z, z* ) = 0, (p̂µ0̂

µ +ms) f (x, z, z* ) = 0. (7.10)

In the rest frame and for definitem ands, solutions of Eqs. (7.9) and (7.10) are
given by (7.11) and (7.12), respectively,

V+ V−

e±imx0
(z1± z* 1̇)s+s3(z2± z* 2̇)s−s3 e∓imx0

(z1± z* 1̇)s+s3(z2± z* 2̇)s−s3,

η sign p0 = −1, (7.11)

e∓imx0
(z1± z* 1̇)s+s3(z2± z* 2̇)s−s3 e±imx0

(z1± z* 1̇)s+s3(z2± z* 2̇)s−s3,

η sign p0 = 1, (7.12)

Here the sign ofηp0 is specified for half-integer spins; for integer spins, all
the solutions haveη = 1. Solutions (7.11) and (7.12) are eigenfunctions for the
Casimir operatorŝp2, Ŵ2, and for spin projection operatorŜ3 with the eigenvalues
m2,−s(s+ 1)m2, ands3,−s ≤ s3 ≤ s respectively.

For half-integer spins, a general solution of the system (7.8) with definite
sign of the mass term has definite sign ofηp0. Such a solution carries a reducible
representation of the improper Poincar´e group. The representation is a direct sum
of two irreps with opposite signs ofη andp0. Hence, the general solution contains
2(2s+ 1) independent components. Sinceη is invariant under discrete transfor-
mations, the representation carried by the solution remains reducible with respect
to the extended Poincar´e group.

Thus, for half-integer spins, the sign of the mass term in the Eqs. (7.9) and
(7.10) coincides with the sign of the product

ηp0SR
3 . (7.13)

Recall that the sign ofSR
3 distinguishes particles and antiparticles; this sign is

fixed by the choice of the spaceV+ or V−. In each the spaceV+ or V−, the general
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solution carries a direct sum of two irreps of the improper Poincar´e group, which are
characterized by signp0, η or−signp0,−η. For integer spins, in each spaceV+ or
V−, the general solution carries a direct sum of two irreps, which are characterized
by fixed intrinsic parityη = 1 and different signs ofp0.

As was demonstrated above, the set (7.7), which includes the first order
in ∂/∂x operatorp̂µ0̂

µ, specifies some characteristics of representations of the
extended Poincar´e group. As it was shown by Gitman and Shelepin (in press),
in the case of finite-dimensional representations of the Lorentz group, the system
(7.8) is equivalent to Bargmann–Wigner equations. In turn, for half-integer spins,
the latter equations are equivalent to Rarita–Schwinger equations (Ohnuki, 1988).
Hence, the structure of solutions of Bargmann–Wigner and Rarita–Schwinger
equations is similar to the structure of solutions of Eq. (7.8).

Considering equations that fix not onlym ands but some additional charac-
teristics of the extended Poincar´e group representations, such as energy or charge
signs, we cannot be sure that all the discrete transformations are symmetry ones for
such equations. For example, the discrete symmetry group for the Eqs. (7.9) and
(7.10) with definite sing of the mass term (and therefore discrete symmetry groups
of the Dirac and Duffin–Kemmer equations) includes the only transformations that
do not change the sign ofp0SR

3 .
The transformationsP, C, Tw do not change sign ofp0SR

3 and, therefore, do
not change sign of the mass term in the first order equations under consideration.
An additional (fourth) independent transformation changes sing ofp0SR

3 and cor-
respondingly sign of the mass term. As such a transformation, we can consider,
for example, the inversionIx or Schwinger time reversalTsch.

Majorana equations (associated with infinite-dimensional irreps ofSL(2, C),
Majorana, 1932; Stoyanov and Todorov, 1968) are only invariant under discrete
transformations that do not change sign ofp0 (Naka and Got¯o, 1971; Oksak and
Todorov, 1968).

On the other hand, there exists a formulation that admits all four independent
discrete transformations as symmetry transformations. This formulation is based
on the use of set (7.6) of commuting operators and the representations (s0)⊕ (0s)
of the Lorentz group. To fix a representation (s0)⊕ (0s), one can use Casimir
operators of the Lorentz group or (for the subspacesV±) the operatorŝBR

3 , ŜR
3 ; the

set (7.6) contains all these operators. It was shown (Gitman and Shelepin, 2001)
that equations

p̂2 f (x, z) = m2 f (x, z), ŜR
3 f (x, z) = ±s f(x, z), i B̂R

3 f (x, z) = ±s f(x, z)
(7.14)

fix the spin of scalar functions fromV±. In the rest frame solutions of Eq. (7.14)
with a definite spin projections3 have the form (in contrast to (7.11) and (7.12),
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signs in exponents and in brackets can be chosen independently):

V+ : e±imx0
((z1)s+s3(z2)s−s3 ± (z* 1̇)s+s3(z* 2̇)s−s3), (7.15)

V− : e±imx0
((z1)s+s3(z2)s−s3 ± (z* 1̇)s+s3(z* 2̇)s−s3). (7.16)

The sign in brackets defines the intrinsic parity. For half-integer spins, the upper
sign corresponds toη = 1 and the lower sign corresponds toη = −1. For integer
spins, the upper sign in (7.15) and the lower sign in (7.16) correspond toη = 1,
and the opposite signs correspond toη = −1. Thus, for each spaceV+ or V−, a
general solution of the system has 4(2s+ 1) independent components and carries
a reducible representation of the improper Poincar´e group. This representation
splits into four irreps labelled by different signs ofη and p0.

The formulation under consideration allows the coupling of higher spins
with an external electromagnetic field. Indeed, unlike Eq. (7.8), the system (7.14)
contains the only one equation with space-time derivatives∂µ. (Notice that the first
equation of (7.8) is a consequence of other two ones only fors= 1/2 ands= 1
(Gitman and Shelepin, in press), i.e., for Dirac and Duffin–Kemmer equations).
Particles with definite spins and massm are described by Klein–Gordon equation
with polarization, [

( p̂− eA)2− e

2s
Ŝ
µν

Fµν −m2
]
ψ(x) = 0,

whereψ(x) carries the representation (s0)⊕ (0s) of the Lorentz group (Feynman
and Gell-Mann, 1958; Hurley, 1971, 1974; Ionesco-Pallas, 1967; Kruglov, Preprint
hep-ph/9908410). Fors= 1/2, this equation is the squared Dirac equation. So-
lutions of the Klein–Gordon equation with polarization are casual, they have
4(2s+ 1) independent components (for any sign of energy there are solutions
with both signs of the intrinsic parityη = ±1), two times more components than
solutions of Dirac and Duffin–Kemmer equations.

We have seen that in the massive case, the transformationsP andTw map any
irrep of the improper Poincar´e group into itself. The operatorP labels irreps of the
improper Poincar´e group. Wigner time reversalTw corresponds to the reversal of
the direction of motion and does not change characteristics of representations of the
Poincaré group extended by other discrete transformations (η and signs of energy
andPCTw-charge). For example, for spin-1/2 particles at the rest frame (see (7.1)),
we haveeimx0

zα
Tw→ eimx0

zα, and the transformationTw reduces to the rotation by
the angleπ . In the general case,Tw is not reduced to some continuous or discrete
transformations. The transformation changes signs both of momentum vector and
spin pseudovector, whereasP changes signs of the momentum vector only.

Two discrete transformations interchange nonequivalent representations of
the extended Poincar´e group. As such transformations one can chooseIx and Iz
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or Ix andC, as it is done below, where the first sign is one ofPCTw-charge and
the second sign is one ofp0:

++ +− ++ +−
C l η = 1 η = −1 l C

−− −+ −− −+↔
Ix

↔
Ix

Let us touch the problem of relative parity of particles and antiparticles.
As it was first pointed out by Nigam and Foldy (1956) for spin-1/2 case, such
problem admits different treatments; discussions for another spins can be found
by Ahluwalia (1996), Ahluwaliaet al.(1993), and Silagadze (1992). Consider the
problem in the framework of the representation theory of the extended Poincar´e
group.

As was mentioned above, the charge conjugation andPCTw-transformation
cannot change the intrinsic parityη, sinceC andIz commute withP. Suppose that
a particle is described by an irrep of the improper Poincar´e group. Then we may
consider two different possibilities: (a) the corresponding antiparticle is described
by PCTw-conjugate (or charge-conjugate) irrep, in such a case parities of the
particle and the antiparticle must coincide for any spin; (b) the corresponding
antiparticle is described by an irrep, which is labelled not only by the opposite
PCTw-charge but also by the opposite parityη. In the latter case, irreps describing
particles and antiparticles are not connected by transformationsC or PCTw.

Usually, the relation between parities of particles and antiparticles is derived
from the corresponding wave equations. Consider some relativistic wave equation
describing field with definite spin and mass. As a rule, a general solution of a
given equation carries a reducible representation of the improper Poincar´e group;
irreducible subrepresentations (or their charge conjugated) are identified with par-
ticle and antiparticle fields. Since different equations have different structure of the
solutions, both possibilities mentioned above can be realized in such an approach.

Consider some examples. One can suppose that fors= 1/2 “wave function
of antiparticle is a bispinor charge-conjugate to some negative frequency solution
of the Dirac equation” (Berestetskiiet al., 1971). Free Dirac equation has solu-
tions corresponding to two nonequivalent irreps of the improper Poincar´e group;
these irreps are characterized by opposite signs ofη andp0. If a positive frequency
solution has the intrinsic parityη, then negative frequency solution has the oppo-
site intrinsic parity−η. This parity is not changed under the charge conjugation
and intrinsic parities of particles and antiparticles are opposite. Solutions of the
Duffin–Kemmer equation with different signs of energy have identical intrinsic
parities. Thus, a standard point of view is that the intrinsic parities for spin one
particles and antiparticles are the same. However, studying some relativistic wave
equations associated with the representations (s0)⊕ (0s) of the Lorentz group,
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one can conclude that intrinsic parities of particles and antiparticles are opposite
for integer spins (Ahluwalia, 1996; Ahluwaliaet al., 1993).

8. GROUP-THEORETICAL DERIVATION OF THE DIRAC EQUATION

Let us consider a pure group-theoretical derivation of the Dirac equation
in detail. (An heuristic discussion of the problem can be found by Ahluwalia
(1996), Ahluwaliaet al. (1993), Gaioli and Alvarez (1995), and Ryder (1988).)
This derivation is based on the construction of the extended Poincar´e group rep-
resentations with some fixed characteristics. In addition to the evident conditions
(fixing the mass and spinor representation of the Lorentz group) it is necessary to
demand that states with definite energy possess definite parity, and also that the
states possess definitePCTw-charge. As we will show, the sign of mass term in
the Dirac equation coincides with the sign of the product of three characteristics
of the extended Poincar´e group representations, namely, the intrinsic parity, the
sign of PCTw-charge, and the sign of energy. Notice that the consideration and
attempts of physical interpretation of two possible signs of the mass term in the
Dirac equation have a long history (see, in particular, Barut and Ziino, 1993; Brana
and Ljolje, 1980; Dvoeglazov, 1996; Markov, 1964, and references therein).

Consider a representation of the extended Poincar´e group with the following
characteristics: (i) definite massm > 0; (ii) definite PCTw-charge; (iii) states
with definite sign of energy possess definite intrinsic parityη and vice versa; and
(iv) fields f (x, z) with above characteristics is linear inz (the latter corresponds
to fixing the representation (1

2 0)⊕ (0 1
2) of the spin Lorentz subgroup).

According to (iii), this reducible representation of the extended Poincar´e
group, which we denote byTD, is the direct sum of two representations with the
opposite signs of energy and intrinsic parity.

The suppositions (ii) and (iv) allow the only scalar functions of the form

f+(x, z) = zψR+ ∗zψL, f−(x, z) = zψR+ ∗zψL, (8.1)

where we have introduced columnsψL = (ψα̇), ψR = (ψα). These functions cor-
respond to two possible signs ofPCTw-charge. According to (i), there exist func-
tions f (x, z) corresponding to particles in the rest frame such thatp̂0 f (x, z) =
p0 f (x, z), p̂k f (x, z) = 0, where the energyp0 = εEm, εE = signp0. According
to (iii), these functions are characterized by the parityη, defined as the eigenvalue
of the space inversion operator,P f (x, z) = η f (x, z). Using the latter equation and
the relation (3.28), we obtain:ψR( ◦p) = −ηψL( ◦p) for the functionsf+(x, z), and
ψR( ◦p) = ηψL( ◦p) for the functionsf−(x, z) where ◦p = (εEm, 0). Both the cases
can be described by one equation

ψR( ◦p) = εcηψL( ◦p), (8.2)

whereεc = signSR
3 is the sign of the charge.
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The Lorentz transformation of the spinorsψR(p) = UψR( ◦p), ψL(p) =
(U †)−1ψL( ◦p) results in a transition to a state, which is characterized by the mo-
mentumP = U P0U †, whereP = pµσµ, P0 = εEmσ0. Thus, we obtain

εEmUU† = pµσ
µ. (8.3)

Taking into account the transformation law for spinors, we can rewrite (8.2) in the
form

ψR = εcηUU †ψL, ψL = εcη(UU †)−1ψR.

Using (8.3), we can expressUU † in terms of the momentum,

mψR = εcεEηpuσ
µψL, mψL = εcεEηpµσ̄

µψR,

and combine these two equations into the one

(pµγ
µ − εcεEηm)9 = 0, γ µ =

(
0 σµ

σ̄µ 0

)
, 9 =

(
ψR

ψL

)
. (8.4)

Finally, for plane waves, one can change the momentumpµ by the corresponding
operator p̂µ. Since the plane waves form a basis of the representationTD and
the superposition principle holds, the states belonging toTD are subjected to the
equation

( p̂µγ
µ − εcεEηm)9 = 0. (8.5)

In the above consideration, we could use a more restrictive condition of
irreducibility of the representation of the improper Poincar´e group instead of (iii).
But, in any case, general solution of the equation obtained includes states with both
signs of intrinsic parity and energy and carry reducible representation obeying
the condition (iii). The above consideration also shows the impossibility of the
derivation of the Dirac equation only in terms of the proper or improper Poincar´e
group representations, since the Dirac equation connects signs of the energyεE,
of the parityη, and of the chargeεc, which characterize representations of the
extended Poincar´e group.

9. DISCRETE SYMMETRIES OF RELATIVISTIC WAVE
EQUATIONS. MASSLESS CASE

For spin-tensor massless fields with integer and half-integer spins, eigenvalues
of the Casimir operatorŝp2 andŴ

2
are zero (see, e.g., Tung, 1985). Such fields

obey the conditions

Ŵµ f (x, z) = λ p̂µ f (x, z), (9.1)

whereλ is the helicity. In particular, forµ = 0 we have

p̂Ŝ f (x, z) = λ p̂0 f (x, z). (9.2)
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The transformationsP andC change the sign in Eq. (9.2); on the other hand,
the transformationsIx, Iz, Tsch, which change the sign of mass term in the Dirac
equation, are symmetry transformations of the Eq. (9.2). Discrete symmetries of
the Eq. (9.2) are generated by three independent operations. For example, these
could beIx, C P, Tw, the first of which is not a symmetry transformation for the
Dirac equation.

The Weyl equationŝpσ9(x) = ± p̂09(x) are particular cases of Eq. (9.2) for
helicities±1/2, respectively; these equations can be obtained by the substitution
of the function f (x, z) = 9α(x)zα into (9.2).

Massless irreps of the proper Poincar´e group are labelled by two numbers (see
Table IV), namely, by the helicityλ = pS/p0 and byp0 sign. If it is not necessary
to consider states with definite parity, then instead ofV+ andV− it is natural to
consider four subspaces of functionsf (x, z), f (x, z), f (x,

∗
z), f (x,

∗
z).

In each subspace the Eq. (9.2) has four solutions with definite chiralitys.
These solutions describe a motion along the axisx3 and are labelled by signs
of the helicity andp0. Considering the action of the operatorsC and Iz on the
solutions, we can see that these solutions describe particles that do not coincide
with their antiparticles.

For particles withp0 > 0 we have

λ = s : ei (px0+px3)(z1)2s, ei (px0+px3)(
∗
z1̇)2s, (9.3)

λ = −s : ei (px0+px3)(z2)2s, ei (px0+px3)(
∗
z2̇)2s, (9.4)

and for antiparticles withp0 > 0

λ = s : ei (px0+px3)(z1)2s, ei (px0+px3)(
∗
z1̇)2s, (9.5)

λ = −s : ei (px0+px3)(z2)2s, ei (px0+px3)(
∗
z2̇)2s. (9.6)

The operatorsP andC interchange states with opposite chirality. The operator
Iz, interchanging the states with oppositePCTw-charge, does not change signs of
the chirality and of the energy. The signs of the helicity and of the chirality are
changed simultaneously under the discrete transformations.

Above we have developed the description of particles which differ from their
antiparticles. Let us consider as an example the description of pure neutral massless
spin-1 particles (let say photons) in terms of a scalar field on the Poincar´e group.
Such a particle coincides with its antiparticle (it has zeroPCTw-charge) and has
the chirality±1. Quadratic inz= (z, z,

∗
z,
∗
z) functions that obey these conditions

depend onzαzβ ,
∗
zα̇
∗
zβ̇ only and must be zero vectors forŜ

R
3 . Thus, pure neutral

massless spin-1 particles are described by scalar functions of the form

f (x, z) = χαβ(x)zαzβ + ψα̇β̇(x)
∗
zα̇
∗
zβ̇ =

1

2
Fµν(x)qµν , (9.7)
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where

qµν = −qνµ = 1

2
((σµν)αβzαzβ + (σ̄µν)α̇β̇

∗
zα̇
∗
zβ̇),

∗
qµν = qµν , (9.8)

Fµν(x) = −2((σµν)αβχ
αβ(x)+ (σ̄µν)α̇β̇ψ

α̇β̇(x)). (9.9)

The functionsχαβ(x) andψα̇β̇(x) must be symmetric in their indices; otherwise by
virtue of the constraintz1z2− z2z1 = 1 (which is a consequence of the unimod-
ularity of SL(2, C)) the field (9.7) can contain componentsχ[αβ] (x) andψ[α̇β̇] (x)
of zero spin. Therefore, formulations in terms ofχαβ(x), ψα̇β̇(x), andFµν(x) are
equivalent. Left and right fields can be described by the functions

FL
µν(x) = Fµν(x)− i F̃µν(x) = −4(σ̄µν)α̇β̇ψ

α̇β̇(x), (9.10)

FR
µν(x) = Fµν(x)+ i F̃µν(x) = −4(σµν)αβχ

αβ(x), (9.11)

whereF̃µν(x) = 1
2εµνρσ Fρσ .

To describe states with a definite helicity, the functions (9.7) should obey the
equation (9.2) forλ = ±1,

(p̂Ŝ∓ p̂0) f (x, z) = 0. (9.12)

For p0 > 0, the Eq. (9.12) has four solutions which correspond to a motion along
the axisx3. These solutions differ by signs of helicity and chirality:

λ = 1 : ei (px0+px3)z1z1, ei (px0+px3) ∗z1̇
∗
z1̇, (9.13)

λ = −1 : ei (px0+px3)z2z2, ei (px0+px3) ∗z2̇
∗
z2̇ . (9.14)

Fixing the relative sign between helicity and chirality (this sign distinguishes the
equivalent representations of the extended Poincar´e group), we obtain two solutions
corresponding to two polarization states.

Substituting the functionsfL(x, z) = ψα̇β̇(x)
∗
zα̇
∗
zβ̇ and fR(x, z) =χαβ(x)zαzβ

into (9.12) (forλ = ±1 respectively) and going over to the vector notation in ac-
cordance with (9.10) and (9.11), we obtain equations forFL

µν(x) andFR
µν(x),

∂µFL
µν(x) = 0, ∂µFR

µν(x) = 0. (9.15)

Obviously they are equivalent to the Maxwell equations

∂µFµν(x) = 0, ∂µ F̃µν(x) = 0. (9.16)

As is known, the second equation results inFµν(x) = ∂µAν − ∂νAµ, where com-
plex potentialsAµ are introduced.
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Taking into account the action of discrete transformations onz (see (3.28)),
we findqµν

P→ (−1)δ0µ+δ0µqµν , qµν
Iz→−qµν , qµν

C→ qµν . Then as a consequence
of (9.7), we obtain

P : Fµν(x)→ (−1)δ0µ+δ0µ Fµν(x̄), Aµ(x)→−(−1)δ0µ Aµ(x̄); (9.17)

Iz : Fµν(x)→ −Fµν(x), Aµ(x)→−Aµ(x), (9.18)

C : Fµν(x)→ ∗
Fµν (x), Aµ(x)→∗

Aµ (x). (9.19)

It is easy to see that theC transformation, acting on the functions (9.7) as a complex
conjugation, interchanges states with opposite helicities. ThusC transformation
cannot be considered separately for left and right fields (see, e.g., Ohnuki, 1988).
The transformationI3 does not changes the functions (9.7).

In contrast to the initial Eq. (9.12), wherep0 sign is changed under the space
reflection and the charge conjugation, the Eq. (9.16) are invariant under the latter
transformations since left and right fields enter inFµν(x) on an equal footing. Thus,
P, Ix, C, Tw are symmetry transformations for the Eq. (9.16).

We can consider real and imaginary parts ofFµν(x) as two independent real
fieldsF (1)

µν (x) andF (2)
µν (x); they satisfy the same Eq. (9.16) and are characterized by

opposite parities with respect to the charge conjugation operation. However, these
fields do not describe states with a definite helicity since they include both left and
right components according to (9.9). One ought to notice thatFL

µν(x) andFR
µν(x)

cannot be treated as classical electromagnetic fields, but can be treated as wave
functions of left-handed and right-handed photons (Akhiezer and Berestetskii,
1981; BialÃynicki-Birula, 1994; Ohnuki, 1988).

10. CONCLUSION

We have shown that the representation theory of the proper Poincar´e group
implies the existence of five nontrivial independent discrete transformations cor-
responding to involutory automorphisms of the group. As such transformations
one can choose space reflectionP, inversion Ix, charge conjugationC, Wigner
time reversalTw. The fifth transformation for the most fields of physical in-
terest (except the Majorana field) is reduced to the multiplication by a phase
factor.

Considering discrete automorphisms as operators acting in the space of the
functions on the Poincar´e group, we have obtained the explicit form for the discrete
transformations of arbitrary spin fields without any appealing to relativistic wave
equations. The examination of the action of automorphisms on the operators,
in particular, on the generators of the Poincar´e group, ensures the possibility to
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get transformation laws of corresponding physical quantities. The analysis of the
scalar field on the group allows us to construct explicitly the states corresponding to
representations of the extended Poincar´e group, and also to give the classification
of the solutions of various types of relativistic wave equations with respect to
representations of the extended group.

Since in the general case a relativistic wave equation can fix some char-
acteristics of the extended Poincar´e group representation, which are changed
under the discrete transformations, only a part of the discrete transformations
forms symmetry transformations of the equation. In particular, discrete symme-
tries of the Dirac equation and of the Weyl equation are generated by two dif-
ferent sets of the discrete transformations operators,P, C, Tw and PC, Ix, Tw

respectively.
Being based on the concept of the field on the group and on the consideration

of the group automorphisms, the approach developed can be applied to the analysis
of discrete symmetries in other dimensions and also to other space-time symmetry
groups.

APPENDIX A: THE LEFT AND RIGHT GENERATORS OF
SL(2, C) IN THE SPACE OF SCALAR FUNCTIONS
ON THE POINCAR É GROUP

The left and right spin operators have the form (Gitman and Shelepin, in
press)

Ŝk = 1

2

(
zσk∂z − z* σ* k∂∗z

)+ · · · ,
B̂k = i

2

(
zσk∂z + z* σ* k∂∗z

)+ · · · , z= (z1 z2), ∂z = (∂/∂z1∂/∂z2)T ; (A1)

Ŝ
R
k = −

1

2

(
χσ* k∂χ −

∗
χσk∂ ∗χ

)+ · · · , χ = (z1 z1),

B̂
R
k = −

i

2
(χσ* k∂χ +

∗
χ /∂z1∂/∂z1)T ; (A2)

By three dots we have denoted here expressions obtained from the preceding ones
by the substitutionz→ z= (z1 z2), χ → χ ′ = (z2 z2). Two first equations can be
rewritten as

Ŝ
µν = 1

2
((σµν)α

βzα∂β + (σ̄ µν)α̇ β̇z* α̇∂
β̇)− c.c., (A3)
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where∂α = ∂/∂zα, ∂α̇ = ∂/∂z* α̇,

(σµν)α
β = − i

4
(σµσ̄ ν − σ νσ̄ µ)α

β , (σ̄ µν)α̇ β̇ = −
i

4
(σ̄ µσ ν − σ̄ νσµ)α̇ β̇ , (A4)

and c.c. is complex conjugate term.

APPENDIX B: EQUATIONS FOR DEFINITE MASS AND SPIN IN
TERMS OF SCALAR FUNCTIONS ON THE POINCAR É GROUP

The equations for scalar functionsf (x, z, z* ) on the Poincar´e group

p̂2 f (x, z, z* ) = m2 f (x, z, z* ), (B1)

p̂µ0̂
µ f (x, z, z* ) = ms f(x, z,

∗
z), (B2)

where

0̂µ = 1

2
(σ̄ µα̇αz* α̇∂α + σµαα̇zα∂α̇)− c.c. (B3)

describe a particle with fixed massm > 0 and spins, if we suppose thatf (x, z, z* )
is a polynomial of the power 2s in z, z* (Gitman and Shelepin, in press). Analogous
statement also holds for polynomial inz, z* functions f (x, z, z* ). Operatorŝ0µ and
Ŝ
µν

obeySO(3, 2) group commutation relations

[ Ŝ
λµ

, 0̂ν ] = i (ηµν0̂λ − ηλν0̂µ), [0̂µ, 0̂ν ] = −i Ŝ
µν
. (B4)

These are commutation relations for the matricesγ µ/2. Together with the chirality
operator

0̂5 = 1

2
(zα∂α − z* α̇∂

α̇)− c.c., (B5)

and the operatorŝ0
µ = i [0̂µ, 0̂5], Ŝ

R
3 , the operators0̂µ, Ŝ

µν
form a set of

16 operators, which do not change the power of polynomialsf (x, z, z* ) in z, z* .
Being written in spin-tensor notation, the equation (B2) fors= 1/2 appears

to be the Dirac equation and fors= 1 the Duffin–Kemmer equation. In the general
case, being written in spin-tensor notation, the system (B1)–(B2) consists of the
Klein–Gordon equation and symmetric Bhabha equation (Gitman and Shelepin,
2001). This system is equivalent to the Bargmann–Wigner equations (Gitman
and Shelepin, 2001; Loideet al., 1997).
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